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A B S T R A C T

In this paper, we address a way to reduce the total computational cost of meshless approximation by reducing
the required stencil size through spatially varying computational node regularity. Rather than covering the
entire domain with scattered nodes, only regions with geometric details are covered with scattered nodes,
while the rest of the domain is discretized with regular nodes. A simpler approximation can be used in regions
covered by regular nodes, effectively reducing the required stencil size and computational cost compared to
the approximation on scattered nodes where a set of polyharmonic splines is added to ensure convergent
behaviour.

This paper is an extended version of conference paper entitled ‘‘Spatially-varying meshless approximation
method for enhanced computational efficiency’’ (Jančič et al., 2023) presented at ‘‘International Conference
on Computational Science (ICCS) 2023’’. The paper is extended with discussion on development and imple-
mentation of a hybrid regular-scattered node positioning algorithm (HyNP). The performance of the proposed
HyNP algorithm is analysed in terms of separation distance and maximal empty sphere radius. Furthermore, it
is demonstrated that HyNP nodes can be used for solving problems from fluid flow and linear elasticity, both
in 2D and 3D, using meshless methods.

The extension also provides additional analyses of computational efficiency and accuracy of the numerical
solution obtained on the spatially-variable regularity of discretization nodes. In particular, different levels of
refinement aggressiveness and scattered layer widths are considered to exploit the computational efficiency
gains offered by such solution procedure.
1. Introduction

Although the meshless methods are formulated without any re-
strictions regarding the node layouts, it is generally accepted that
quasi-uniformly-spaced node sets improve the stability of meshless
methods [1,2]. Nevertheless, even with quasi-uniform nodes generated
with recently proposed node positioning algorithms [3–5], a suffi-
ciently large stencil size is required for stable approximation. A stencil
with 𝑛 = 2

(𝑚+𝑑
𝑚

)

nodes is recommended [6] for the local Radial Basis
Function-generated Finite differences (RBF-FD) [7] method in a 𝑑-
dimensional domain for approximation order 𝑚. The performance of
RBF-FD method – with approximation basis consisting of Polyharmonic
splines (PHS) and monomial augmentation with up to and including
monomials of degree 𝑚 – has been demonstrated with scattered nodes
on several applications [8–10]. On the other hand, approximation on
regular nodes can be performed with considerably smaller stencil (𝑛 = 5
in two-dimensional domain) using only monomial basis [11] or only
Radial Basis Function (RBF) [12].
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A way to reduce the overall computational complexity while main-
taining accuracy is therefore to divide the domain into regions where
we need scattered nodes to conform the irregular geometry and the
rest of the domain that can be covered with regular nodes that enable
using approximation with smaller stencils. While it is not necessary to
use regular nodes at all, the more of the domain we can discretize with
them without compromising the description of the geometry, the better
the expected computational performance.

The spatially varying approximation method has already been in-
troduced in the past to address different problems with different com-
binations of methods. A hybrid Finite element method (FEM)-meshless
method [13] has been proposed to overcome the issues regarding the
unstable Neumann boundary conditions in the context of meshless
approximation. FEM has been also coupled with meshless method
in [14] using approximation constraints to solve Poisson’s problem,
elasticity and thermo-elasticity problems. Moreover, the authors of [15,
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Table 1
Overview of listed hybrid methods.

Methods Problems tackled Ref

Meshless/FEM Nonlinear structural problems [13]
Meshless/FEM Poisson’s and thermo-elasticity problems [14]
Meshless/FDM Flows past a circular cylinder [15]
Meshless/FDM Elasticity problems [16]
Meshless/FDM Geodynamical simulations [17]
Meshless/FDM Flow around solid bodies [18]

16] proposed a hybrid of Finite Difference Method (FDM) employed
on conventional cartesian grid combined with meshless approxima-
tion on scattered nodes to solve flows past a circular cylinder and
elasticity problems, respectively. FDM has been also coupled with
meshless in the context of geodynamical simulations [17], where au-
thors experimented with combination of Eulerian-Lagrangian schemes.
These hybrid approaches are well elaborated, provide stable numeri-
cal results and are computationally effective, nevertheless, additional
implementation-related burden is required on the transition from mesh
based discretization to scattered nodes [18], contrary to the objective
of this paper relying solely on the framework of meshless methods, in-
cluding the generation of hybrid regular-scattered nodes. The overview
of discussed hybrid methods is presented in Table 1.

In this paper we first propose a dedicated hybrid regular-scattered
node positioning algorithm (HyNP) that is capable of handling irregu-
larities in the domain with scattered nodes, while covering the rest of
the domain with regular nodes. The algorithm is dimension indepen-
dent, i.e. the same algorithm can be used to populate 𝑛-dimensional
domains and inherently supports h-refinement through the spatially
ependent node density. The performance of the proposed algorithm is
valuated in terms of two metrics that are commonly used to evaluate
he discretization quality, i.e. the distance to the closest neighbours also
eferred to as separation distance and the largest empty circle radius.
fterwards, the solution procedure based on such spatially-variable
ode regularity is analysed in terms of computational efficiency and ac-
uracy of the numerical solution. Compared to the original work [19],
he analyses in this paper are extended to include different levels of h-
efinement aggressiveness and scattered layer widths to further exploit
he efficiency gains offered by such solution procedure, as well as
n additional test case from liner elasticity, namely the Boussinesq’s
ontact problem.

The paper is organized as follows: In Section 2, the proposed hybrid
egular-scattered node positioning algorithm is described, in Section 3,
he approximation of linear differential operators using meshless meth-
ds is briefly presented, in Section 4 the numerical examples are given.
inally, conclusions and future work opportunities are presented in
ection 5.

. Hybrid regular-scattered node positioning algorithm (HyNP)
lgorithm

To obtain the hybrid regular-scattered discretization of a 𝑑 dimen-
ional domain 𝛺, we propose an extension for the existing variable
ensity scattered node positioning algorithm proposed by Slak and
osec [3]. The iterative algorithm begins with a given set of seed nodes

hat are placed in an ‘‘expansion queue’’. In each iteration one node
s dequeued and ‘‘expanded’’. The expansion stands for a procedure,
here several candidate nodes are uniformly generated on a sphere and

hen randomly rotated around the expanded node. Candidates that do
ot violate the proximity criteria (are too close to the existing nodes)
nd are within the domain, are accepted as new nodes and added to the
xpansion queue. The iteration continues as long as there are nodes in
he expansion queue.

In HyNP, we exploit the advancing front nature of the algorithm
2

o find and fill the regular parts of the domain as shown in Fig. 1. As
oon as the advancing front encounters a regular area defined with an
ser-defined characteristic function

∶𝛺 ⊂ R𝑑 → {0, 1}, (1)

where 0 stands for the areas to be populated with scattered nodes and
1 for the areas to be populated with regular nodes. Regular nodes are
placed in a similar advancing front fashion as scattered ones [3], where
the candidate nodes are positioned regularly around the parent node.

The edges of regular area are then used as seed nodes for further
progression of the scattered nodes front. Internodal distance in the
regular area is determined by the value of the nodal spacing function

ℎ∶𝛺 ⊂ R𝑑 → (0,∞) (2)

in the first node that is placed within.

Algorithm 1 Hybrid fill algorithm.
Input: A 𝑑 dimensional domain 𝛺 defined with a characteristic function 𝜔∶𝛺 ⊆ R𝑑 → {0, 1}.
Input: A nodal spacing function ℎ∶𝛺 ⊂ R𝑑 → (0,∞).
Input: A characteristic function for regular parts of the domain 𝑔∶𝛺 ⊂ R𝑑 → {0, 1}.
nput: An optional set of boundary and/or seed nodes 𝑋 ⊆ 𝛺.
utput: A list of nodes in 𝛺 with regularity based on 𝑔 and distributed according to spacing

unction ℎ.
1: function hybridFill(𝛺, ℎ, 𝑔, 𝑋)
2: if ‖𝑋‖ = 0 then
3: append(𝑋, 𝒑 ∈ 𝛺) ⊳ Randomly select a seed node if none were provided.
4: 𝑇𝑝 ← kdTreeInit(𝑋) ⊳ Initialize spatial search structure on points 𝑋.
5: 𝑇𝑟 ← kdTreeInit({}) ⊳ Initialize spatial search structure for removable points.
6: 𝑡𝑜𝑅𝑒𝑚𝑜𝑣𝑒 ← {} ⊳ List of nodes to remove due to grid conflicts.
7: 𝑖 ← 0 ⊳ Current node index.
8: while 𝑖 < |𝑋| do ⊳ Until the queue is not empty.
9: 𝒑𝑖 ← 𝑋[𝑖] ⊳ Dequeue current point.
10: if not 𝑔(𝒑𝑖) or 𝑔(𝒑𝑖) ≠ 𝑔(𝒑𝑖−1) then ⊳ For scattered and first grid nodes.
11: ℎ𝑖 ← ℎ(𝒑𝑖) ⊳ Compute its nodal spacing.
12: else
13: ℎ𝑖 ← ℎ𝑖−1 ⊳ Use previous nodal spacing.
14: for each 𝒄 in candidates(𝒑𝑖 , ℎ𝑖 , 𝑔(𝒑𝑖)) do ⊳ Generate new candidates.
15: if 𝒄 ∈ 𝛺 then ⊳ Discard candidates outside the domain.
16: 𝑛𝑝 , 𝑑𝑝 ← kdTreeClosest(𝑇𝑝 , 𝒄) ⊳ Find nearest permanent node index and

distance.
17: if 𝑑𝑝 ≥ ℎ𝑖 then ⊳ Test that the candidate is far enough.
18: 𝑛𝑟 , 𝑑𝑟 ← kdTreeClosest(𝑇𝑟 , 𝒄) ⊳ Find the nearest removable.
19: if 𝑔(𝒄) then ⊳ In regular part of the domain.
20: prepend(𝑋, 𝒄) ⊳ Enqueue 𝒄 as the first element of 𝑋.
21: kdTreeInsert(𝑇𝑝 , 𝒄) ⊳ Insert 𝒄 into the permanent search

structure.
22: while 𝑑𝑟 < ℎ𝑖 do ⊳ Keep removing the removables while in

conflict.
23: append(𝑡𝑜𝑅𝑒𝑚𝑜𝑣𝑒, 𝑛𝑟) ⊳ Append to the list of conflicting

nodes.
24: kdTreeRemove(𝑇𝑟 , 𝑛𝑟) ⊳ Remove from the search structure.
25: 𝑛𝑟 , 𝑑𝑟 ← kdTreeClosest(𝑇𝑟 , 𝒄) ⊳ Find the next closest

removable.
26: else
27: if 𝑑𝑝 ≥ ℎ𝑖 then ⊳ Test that the candidate is far enough.
28: append(𝑋, 𝒄) ⊳ Enqueue 𝒄 as the last element of 𝑋.
29: kdTreeInsert(𝑇𝑟 , 𝒄) ⊳ Insert 𝒄 into the removable spatial search

structure.
30: 𝑖 ← 𝑖 + 1 ⊳ Move to the next non-expanded node.
31: remove(𝑋, 𝑡𝑜𝑅𝑒𝑚𝑜𝑣𝑒) ⊳ Remove the conflicting nodes.
32: return 𝑋

The modified parts of the Algorithm 1 are highlighted by bold
pseudocode comments. The main difference is how the advancing front
candidates are generated on line 14. The algorithm uses 𝑘 = 15
randomly placed candidates on a hypersphere around the seed point in
the scattered part of the domain and 𝑘 = 2𝑑 candidates 𝒄 at a distance

from 𝒑, computed as given in lines 10–13 of Algorithm 1 along a
tandard basis 𝒆𝑖 that is,

= 𝒑 ± ℎ𝒆𝑖; 𝑖 = 1,… , 𝑑. (3)

The regular candidate basis could easily be variable throughout the
domain, allowing for the regular regions to better match the domain
description. Note that the regular nodes have priority, i.e. if a previ-
ously placed non-seed scattered node would prevent a grid node to be
placed within a regular region, the already accepted scattered node is
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Fig. 1. A visualization of hybrid fill algorithm progression on a domain with variable node density and irregularly shaped areas with regular node positioning.
Fig. 2. Visualization of two and three dimensional irregularly shaped clover domains.
removed. This ensures that the maximum possible area is covered by
one continuous grid of regular nodes and minimizes issues caused by
re-entrant grids.

2.1. Evaluation of discretization quality

To assess the potential degradation of node quality due to combin-
ing the two different discretization types we assess separation distance
metrics of different orders. The first metric is the distance between the
𝑖th node and its 𝑗th closest neighbour

𝑑𝑖,𝑗 = ‖𝒑𝑖 − 𝒑𝑛(𝑖,𝑗)‖, (4)

where 𝑛(𝑖, 𝑗) is the index of 𝑗th closest neighbour for node 𝑖. The second
metric is a measure of empty space between nodes 𝑠𝑗 , i.e., the diameters
of the largest hyperspheres that can be inscribed in the empty space
between generated nodes. The diameters

𝑠𝑗 = 2min
𝑖

‖𝒑𝑖 − 𝒗𝑗‖, (5)

are then determined by constructing a Voronoi diagram seeded by node
positions 𝒑 and calculating the distance between the vertex position 𝒗𝑗
and the position of its closest discretization node 𝒑𝑖 for all vertices in
the Voronoi diagram.

The two metrics are compared on a square domain with an irregu-
larly shaped grid type characteristic function 𝑔 based on two and three
dimensional clover-like shape shown in Fig. 2. The parametric surface
of the boundary 𝛿𝛩□ of clover-like shape 𝛩□, depends on a scaling
parameter 𝑙 and is given by the following expressions

𝑟(𝑙, 𝜑) = 𝑙
3∕2

[

1 − 2
3
cos2

(

3
2

(

𝜑 − 𝜋
6

)

)]

, (6)

𝛿𝛩2𝐷 = 𝑟(𝑙, 𝜑){cos(𝜑), sin(𝜑)} for 𝜑 ∈ [0, 2𝜋] , (7)

in 2D and

𝑟(𝑙, 𝜑, 𝜗) = 𝑙
3∕2

[

1 − 2
3
cos2

(

3
2

(

𝜑 − 𝜋
6

)

)

𝜗(𝜋 − 𝜗)
3

]

, (8)

𝛿𝛩3𝐷 = 𝑟(𝑙, 𝜑, 𝜗){cos(𝜑) sin(𝜗), sin(𝜑) sin(𝜗), cos(𝜗)} for 𝜑 ∈ [0, 2𝜋]

𝜗 ∈ [0, 𝜋]
3

(9)
in 3D with scaling 𝑙 = 0.2. These parametrizations give the boundary
between scattered and regular discretization. The parametric definition
is practical as it allows for a relatively simple interior check and for the
surface 𝛿𝛩□ to be populated with nodes using a specialized parametric
surface node positioning algorithm [20]. This clover-like shape will also
be used as an irregularly shaped obstacle in further numerical tests.

We first compare three discretizations of a square 𝛺 = [0, 1] × [0, 1]
domain shown in the top row of Fig. 3. The first column shows a
fully scattered domain, the second column shows a domain filled with
regular nodes inside 𝛩 and scattered outside, while the third column
shows the reverse of the second. In all cases the discretization was
started with a seed node in the lower left corner and used a constant
internodal distance ℎ = 0.02. The second row shows the distribution
of distances to 𝑗th neighbour for different discretizations and the third
row the radii of the largest possible inscribed circles. We can confirm
that the neighbour distance distribution is comparable between the
purely scattered and hybrid fill results — apart from the structural
differences that stem from regularity, i.e. node clusters at multiples
of ℎ and diagonals (

√

2ℎ,
√

5ℎ). More importantly, the empty space
distribution also stays the same, confirming that there is no problem
in coupling the two node arrangements on the irregular boundary.
Additionally we can confirm that there is no discernable difference
between the algorithm starting from regular or scattered sections. The
analysis is repeated for a cube 𝛺 = [0, 1] × [0, 1] × [0, 1] in Fig. 4 with
matching conclusions thus confirming the dimensional independence
of the algorithm.

Note that the proposed hybrid discretization is general in the sense
that the internodal distance ℎ is by no means limited to a constant,
spatially independent, value. Spatially dependent declaration ℎ(𝒑) can
be used to employ h-refinement and locally improve the discretization
quality where this is necessary. An example of an h-refined domain
discretization with clover-like shaped obstructions is shown in Fig. 5.
In this example, the internodal distance linearly increases from ℎ𝑠 on
the boundary of the clover to ℎ𝑟 which is equals to the spacing of reg-
ularly positioned nodes for a smooth transition. For the demonstration
purposes, the width of the scattered node layer 𝛿ℎ in Fig. 5 has been
arbitrarily selected and that the construction of ℎ(𝒑) is made through
nearest-neighbour search structure, specifically, 𝑘-d tree.
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Fig. 3. Visualization of the test domain discretized with different regularity functions 𝑔 and comparison of fill quality measure distributions between scattered and hybrid fill
lgorithms on a 2D domain.
Fig. 4. Comparison of fill quality measure distributions between scattered and hybrid fill algorithms on a 3D domain.
. Numerical approximation of partial differential equations

With the computational nodes 𝒙𝑖 ∈ 𝛺 placed using the HyNP
algorithm, the differential operators  can be locally approximated in
point 𝒙𝑐 over a set of 𝑛 neighbouring nodes (stencil)

{

𝒙𝑖
}𝑛
𝑖=1 =  , using

he following expression

𝑢)(𝒙𝑐 ) ≈
𝑛
∑

𝑖=1
𝑤𝑖𝑢(𝒙𝑖). (10)

he approximation (10) holds for an arbitrary function 𝑢 and yet to be
etermined vector of weights 𝒘. To determine the weights, the equality
f approximation (10) is enforced for a chosen set of basis functions.
ere we will use two variants
4

(i) The first setup uses a shape parameter free Polyharmonic spline
(PHS)

𝜑(𝑟) =
{

𝑟𝑘, 𝑘 odd
𝑟𝑘 log 𝑟, 𝑘 even , (11)

basis augmented with polynomials effectively resulting in a pop-
ular radial basis function-generated finite differences (RBF-FD) ap-
proximation method [7]. Such approximation necessarily repro-
duces polynomials up to the given order (the order of aug-
menting monomials), in other words, it is exact for augmenting
polynomials, i.e. the approximation is of the same order as the
polynomial augmentation [6]. This has been discussed, analysed
and demonstrated in several recent publications [6,9,21–23],
including the recently introduced ℎ𝑝-adaptive meshless method,
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Fig. 5. Irregular domain discretization example (left) and spatial distribution of approximation methods along with corresponding example stencils (right).
where authors dynamically adjust the order of the method via
order of augmenting monomials [24].

(ii) Second setup uses a set Gaussian functions

𝑔(𝑟) = exp(−𝑟2∕𝜎2) (12)

centred at the stencil nodes, where 𝜎 is shape parameter that has
to be determined specifically for each stencil size. We refer to
this setup to as a local Radial Basis Function Collocation method
(LRBFCM) [12,25,26]. In this case, the convergence behaviour is
no longer as clear as in the case of augmented approximation.
In an experimental study, Ding et al. [27] showed that the
error estimate scales with 𝑂(ℎ∕𝜎). In [27], authors also discussed
the dependence of the error estimate on the stencil size, which
was later refined by Bayona et al. [28], who found that the
method is of second order for stencil sizes between 5 and 12.
In both papers [27,28] authors experimented with second-order
Poisson’s PDE in 2D.

The LRBFCM setup is computationally efficient, but only stable on
regular nodes [11,29]. Unless otherwise specified, in a 𝑑-dimensional
domain the LRBFCM method will be employed using 2𝑑 + 1 Gaussian
functions using shape parameter 𝜎 = 90. A stencil size equal to the
size of the corresponding RBF basis pool is required. For the RBF-FD
part, we also resort to the minimal configuration required for 2nd-order
operators, i.e., 3rd-order PHS augmented with all monomials up to the
2nd-order (𝑚 = 2) and we can assume that the approximation of partial
differential operators used in this work is of a second order [6,28].
According to the standard recommendations [6], this requires a stencil
size of 𝑛 = 2

(𝑚+𝑑
𝑚

)

for a stable approximation.
The weights 𝒘 are calculated by imposing equality in Eq. (10) and

solving a system of linear equations 𝑨𝒘 = 𝒃 for each computational
node

⎡

⎢

⎢

⎣

𝜙1,1 ⋯ 𝜙1,𝑛
⋮ ⋱ ⋮

𝜙𝑛,1 ⋯ 𝜙𝑛,𝑛

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑤1
⋮
𝑤𝑛

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

(𝜙1,1)|𝒑1
⋮

(𝜙1,𝑛)|𝒑1

⎤

⎥

⎥

⎦

, (13)

where

𝜙𝑖,𝑗 = 𝛬
(

‖𝒑𝑖 − 𝒑𝑗‖
‖𝒑1 − 𝒑2‖

)

(14)

are radial basis functions written with centralized stencil positions 𝒑
and normalized with the distance between the central node position 𝒑1
and the closest stencil position 𝒑2. The basis 𝛬(𝑟) = 𝑔(𝑟) for LRBFCM and
𝛬(𝑟) = 𝜑(𝑟) for RBF-FD. The system for the latter requires an additional
5

augmentation with 𝑠 =
(𝑚+𝑑

𝑑

)

monomials 𝑞 up to the 𝑚th order to ensure
positive definiteness

[

𝑨 𝑸
𝑸𝑇 0

] [

𝒘
𝝀

]

=
[

𝒃
𝒄

]

,

𝑸 =
⎡

⎢

⎢

⎣

𝑞1(𝒑1) ⋯ 𝑞𝑠(𝒑1)
⋮ ⋱ ⋮

𝑞1(𝒑𝑛) ⋯ 𝑞𝑠(𝒑𝑛)

⎤

⎥

⎥

⎦

, 𝒄 =
⎡

⎢

⎢

⎣

(𝑞1)|𝒑1
⋮

(𝑞𝑠)|𝒑1

⎤

⎥

⎥

⎦

.
(15)

The redundant part of the weight vector 𝜆 is discarded after computa-
tion.

It is important to note the difference in required stencil sizes –
5 vs. 12 nodes in 2D – that only increases in higher dimensions (7
vs. 30 in 3D). This results both in faster computation of the weights 𝒘
(an (𝑁3)1 operation performed only once for each stencil), in faster
evaluation for the (𝑛) explicit operator approximation (10) performed
many times during the explicit time stepping, and in faster solving of
the sparse linear systems.

3.1. Computational stability

By enforcing the equality of approximation (10), we obtain a linear
system 𝐌𝒘 = 𝓵. Solving the system provides us with the approximation
weights 𝒘, but the stability of such procedure can be uncertain and
is usually estimated via the condition number 𝜅(𝐌) = ‖𝐌‖

‖

‖

‖

𝐌−1‖
‖

‖

of
matrix 𝐌, where ‖⋅‖ denotes the 𝐿2 norm.

A spatial distribution of condition numbers is shown in Fig. 6. It can
be observed that the RBF-FD approximation method generally results
in higher condition numbers than the LRBFCM approach. This could be
due to the fact that the matrices 𝐌 for the RBF-FD part are significantly
larger and based on scattered nodes. Nevertheless, it is important to
observe that the transition from regular to scattered nodes does not
appear to affect the conditionality of the matrices.

3.2. Implementation details

We used g++ 11.3.0 for Linux to compile the code with -O3
-DNDEBUG flags on Intel(R) Xeon(R) CPU E5520 computer. To
improve the timing accuracy we run the otherwise parallel code in a
single thread with the CPU frequency fixed at 2.27 GHz, disabled boost

1 𝑁RBF−FD ∼ 3𝑁LRBFCM due to the larger stencil size and the extra PHS in
the approximation basis.
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Fig. 6. Condition numbers 𝜅(𝐌) for the Laplacian operator: entire computational domain (left) and a zoomed-in section around the irregularly shaped obstacle (right).
functionality and assured CPU affinity using the taskset command.
Post-processing was done using Python 3.10.6 and Jupyter notebooks,
also available in the provided git repository.2

4. Numerical examples

4.1. Natural convection problem

To objectively assess the advantages of the hybrid discretization
method, we first address non-linear natural convection problem that
is governed by a system of three PDEs that describe the continuity of
mass, the conservation of momentum and the transfer of heat

𝛁 ⋅ 𝒗 = 0, (16)
𝜕𝒗
𝜕𝑡

+ 𝒗 ⋅ 𝛁𝒗 = −𝛁𝑝 + 1
Re𝛁 ⋅ (𝛁𝒗) − 𝒈𝑇𝛥, (17)

𝜕𝑇
𝜕𝑡

+ 𝒗 ⋅ 𝛁𝑇 = 1
RePr𝛁 ⋅ (𝛁𝑇 ), (18)

𝒗 is the velocity vector, 𝑝 the pressure, 𝑇 the temperature, and 𝑇𝛥
the offset from reference temperature. The equations are written in a
dimensionless form using Reynolds (Re) and Prandtl (Pr) numbers [12,
30] while the results are expressed in terms ob the Rayleigh (Ra)
number using the Ra = Re2Pr relation.

The temporal discretization of the governing equations is solved
with the explicit Euler time stepping where we first update the velocity
using the previous step temperature field in the Boussinesq term [31].
The pressure-velocity coupling is performed using the Chorin’s pro-
jection method [32] under the premise that the pressure term of the
Navier–Stokes equation can be treated separately from other forces
and used to impose the incompressibility condition. The time step is
a function of internodal spacing ℎ, and is defined as d𝑡 = ℎ

4 to assure
stability.

The problem is solved on different geometries employing (i)
LRBFCM, (ii) RBF-FD and (iii) their spatially-varying combination. The
performance of each approach is evaluated in terms of accuracy of the
numerical solution and execution times.

4.1.1. The de Vahl Davis problem
First, we solve the standard de Vahl Davis benchmark problem [33].

The main purpose of solving this problem is to establish confidence
in the presented solution procedure and to shed some light on the
behaviour of considered approximation methods, the stability of the
solution procedure and finally on the computational efficiency. Further-
more, the de Vahl Davis problem was chosen as the basic test case,

2 Source code is available at https://gitlab.com/e62Lab/public/2023_cp_
iccs_hybrid_nodes under tag v1.3.
6

because the regularity of the domain shape allows us to efficiently
discretize it using exclusively scattered or regular nodes and com-
pare the solutions to that obtained with the hybrid regular-scattered
discretization.

For a schematic representation of the problem, see Fig. 7 (left). The
domain is a unit box 𝛺 = [0, 1] × [0, 1], where the left wall is kept at a
constant temperature 𝑇𝐶 = −0.5, while the right wall is kept at a higher
constant temperature 𝑇𝐻 = 0.5. The upper and lower boundaries are
insulated, and no-slip boundary condition for velocity is imposed on
all walls. Both the velocity and temperature fields are initially set to
zero.

To test the performance of the proposed hybrid regular-scattered
approximation method, we divide the domain 𝛺 into quarters, where
each quarter is discretized using either scattered or regular nodes —
see Fig. 7 (right) for clarity.

An example solution for Ra = 106 and Pr = 0.71 at a dimensionless
time 𝑡 = 80 with approximately 𝑁 ≈ 10 000 discretization nodes is
shown in Fig. 8.

We use the Nusselt number – the ratio between convective and
conductive heat transfer – to determine when a steady state has been
reached and as a convenient scalar value for comparison with reference
solutions. In the following analyses, the average Nusselt number (Nu)
is calculated as the average of the Nusselt values at the cold wall nodes

Nu = 𝐿
𝑇𝐻 − 𝑇𝐶

|

|

|

|

𝜕𝑇
𝜕𝒏

|

|

|

|𝑥=0
. (19)

Its evolution over time is shown in Fig. 9. In addition, three reference
results are also added to the figure. We are pleased to see that our
results are in good agreement with the reference solutions from the
literature.

Moreover, Fig. 9 also shows the time evolution of the average
Nusselt number value for cases where the entire domain is discretized
using either scattered or regular nodes. We find that all – hybrid,
purely scattered and purely regular domain discretizations – yield
results in good agreement with the references. More importantly, the
hybrid method shows significantly shorter computational time than
that required by the scattered discretization employing RBF-FD, as
can be seen in Table 2 for the densest considered discretization with
ℎ = 0.00364.

To further validate the hybrid method, we show in Fig. 10 the
vertical component of the velocity field across the section 𝑦 = 0.5. It
is important to observe that the results for the hybrid, scattered and
regular approaches overlap, which means that the resulting velocity
fields for the three approaches are indeed comparable.

As a final remark, we also study the convergence of the average
Nusselt number with respect to the number of discretization nodes in
Fig. 11, where we confirm that all our discretization strategies converge

https://gitlab.com/e62Lab/public/2023_cp_iccs_hybrid_nodes
https://gitlab.com/e62Lab/public/2023_cp_iccs_hybrid_nodes


Journal of Computational Science 79 (2024) 102306

7

M. Rot et al.

Fig. 7. The de Vahl Davis sketch (left) and example hybrid regular-scattered domain discretization (right).

Fig. 8. Example solution in the stationary state. Temperature field (left) and velocity magnitude (right).

Fig. 9. Time evolution of the average Nusselt number along the cold edge calculated with the densest considered discretization. Three reference results Kosec and Šarler [12],
Sadat and Couturier [34] and Wan et al. [35] are also added.

Fig. 10. Vertical velocity component values at nodes close to the vertical midpoint of the domain, i.e., |𝑦 − 0.5| ≤ ℎ for purely scattered, purely regular and hybrid discretizations.
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Fig. 11. Convergence of average Nusselt number with respect to discretization quality (left) and corresponding execution times (right).
Fig. 12. Demonstration of the scattered node layer width (𝛿ℎ) effect on the accuracy of the numerical solution.
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Table 2
Average Nusselt along the cold edge along with execution times and number of
discretization nodes.

Approximation Nu Execution time [h] N

Scattered 8.854 13.7 66 406
Regular 8.845 6.2 76 172
Hybrid 8.856 9.8 71 209

Kosec and Šarler (2007) [12] 8.97 / 10 201
Sadat and Couturier (2000) [34] 8.828 / 22 801
Wan et. al. (2001) [35] 8.8 / 10 201

to a similar value that is consistent with the reference values. Moreover,
to evaluate the computational efficiency of the hybrid approach, the
execution times are shown on the right. Note that the same values for
ℎ were used for all discretization strategies and the difference in the
total number of nodes is caused by the lower density of scattered nodes
at the same internodal distance.

4.1.2. The effect of the scattered node layer width 𝛿ℎ
To study the effect of the width of the scattered node layer 𝛿ℎ, we

consider two cases. In both cases, the domain from Fig. 7 is split into
two parts at a distance ℎ𝛿ℎ from the origin in the lower left corner. In
he first scenario, the split is horizontal, resulting in scattered nodes
elow the imaginary split and regular nodes above it. In the second
cenario, the split is vertical, resulting in scattered nodes to the left
f it and regular nodes to the right of it. In both cases, the domain is
iscretized with purely regular nodes when ℎ𝛿ℎ = 0 and with purely

scattered nodes when ℎ𝛿ℎ = 𝐿.
In Fig. 12, we show how the width of the scattered node layer affects

the average Nusselt number in stationary state for approximately 40 000
8

discretization nodes. It is clear that even the smallest values of 𝛿ℎ yield
satisfying results. However, it is interesting to observe that the accuracy
is most affected when the boundary between regular and scattered
nodes runs across the region with the largest velocity magnitudes,
i.e., the first and last couple of vertical split data points in Fig. 12.

4.1.3. Natural convection on irregularly shaped domains
In the previous section we demonstrated that the hybrid regular-

scattered approximation method is computationally more efficient than
the pure RBF-FD approximation with only minor differences in the
resulting fields. However, to truly exploit the advantages of the hybrid
method, irregular domains must be studied. Therefore, in this section,
the hybrid regular-scattered approach is employed on an irregularly
shaped domain. Let the computational domain 𝛺 be a difference be-
tween the two-dimensional unit box 𝛺 = [0, 1] × [0, 1] and 4 randomly
ositioned and sized clover-shaped obstacles 𝛩 defined in Eq. (7).

The dynamics of the problem are governed by the same set of
qs. (16)–(18) as in the previous section. This time, however, all the
oundaries of the box are insulated. The obstacles, on the other hand,
re subject to Dirichlet boundary conditions, with half of them at 𝑇𝐶 =

−0.5 and the other half at 𝑇𝐻 = 0.5. The initial temperature is set to
𝑇init = 0.

We have chosen such a problem because it allows us to further
explore the advantages of the proposed hybrid regular-scattered dis-
cretization. Generally speaking, the clover-shaped obstacles within
the computational domain represent an arbitrarily complex shape
that requires scattered nodes for accurate description, i.e., reduced
discretization-related error.

Moreover, by using scattered nodes near the irregularly shaped
domain boundaries, we can further improve the local field description
in their vicinity by employing a ℎ-refined discretization. Specifically,
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Fig. 13. Example solution on irregular domain. Temperature field (left) and velocity magnitude (right).
Fig. 14. Time evolution of the average Nusselt number calculated on the cold clover-shaped obstacles of an irregularly shaped domain (left) and average Nusselt number for
different combinations of refine parameters (right).
Table 3
Average Nusselt along the cold edges of the clover along with execution times. Note
that both scattered and hybrid in the table were obtained for 𝛿ℎ = 4, while refined
hybrid was obtained for 𝛿ℎ = 5 and ℎreg∕ℎmin = 5.

Approximation Nu Execution time [h] N

Scattered 9.942 14.21 83 530
Hybrid 9.922 7.17 95 292
Refined hybrid 9.936 1.52 10 952

we employ ℎ-refinement towards the obstacles with linearly decreasing
internodal distance from ℎreg (regular nodes) towards ℎmin (irregular
boundary) over a distance of ℎreg𝛿ℎ. Example discretization is shown in
Fig. 5 for a scattered node layer width 𝛿ℎ = 4 and ℎreg = 2ℎmin = 0.01,
yielding approximately 10 500 computational points.

Fig. 13 shows an example solution for an irregularly shaped domain.
The hybrid scattered-regular solution procedure was again able to
obtain a reasonable numerical solution. Fig. 14 (left) shows the average
Nusselt number along the cold clover edges where we can observe that
a stationary state has been reached. The steady state values for all three
considered discretizations match closely. It is perhaps more important
to note that the execution times gathered in Table 3 show that the
uniform density hybrid method effectively reduces the execution time
for ∼50% and that the aggressively refined hybrid discretization for
∼90%. The purely regular LRBFCM approximation is omitted from the
table as it cannot discretize irregular domains.

The unrefined convergence and computational times are presented
in Fig. 15. The results confirm that both the hybrid and the regular
discretization converge to a similar Nusselt value and that the hybrid
is consistently faster at the same node count while returning a slightly
lower value.

Before continuing with refined discretization we look at interplay
between the width of the scattered node layer 𝛿 and aggressiveness
9

ℎ

of refine ratio ℎreg
ℎmin

shown in Fig. 14 (right). The results confirm our
observations from the original work, that the width does not have a
significant impact on the result as long as it is wide enough to avoid
instability for the selected ratio but there is a slight systematic offset.

We repeat the convergence study for refined discretizations with
results shown in Fig. 16. We chose two hybrid discretizations – one
with less aggressive 𝛿ℎ = 3, ℎreg

ℎmin
= 2 refine and another larger 𝛿ℎ = 5,

ℎreg
ℎmin

= 5 – and a scattered discretization with a directly comparable set

of parameters. The results on the left graph of Fig. 16 show that the re-
fined density solutions are faster to converge to the final Nusselt value,
as expected, with the aggressively refined hybrid being significantly
faster (also demonstrated in Table 3). The corresponding execution time
graph on the right seems more surprising at the first glance due to
the refined solutions – even hybrid ones – exhibiting comparable or
longer times than the uniform scattered discretization but this can be
explained by the time-step that is a function of ℎmin.

The true performance in achieving an accurate solution is easier
to determine from a graph of average Nusselt number versus the
execution time shown in Fig. 17. The results show that the hybrid
discretization is slightly faster than the scattered one with comparable
refinement and that we can calculate accurate results significantly
faster by using a strongly refined hybrid discretization. Surprisingly
there is not much difference between weakly refined and unrefined
hybrid/scattered approaches.

4.1.4. Natural convection in three-dimensional domains
The de Vahl Davis test is defined on a unit square domain 𝛺 =

[0, 1] × [0, 1] × [0, 1]., where vertical walls are kept at constant tempera-
tures, while horizontal walls and front/back walls are adiabatic. No-slip
velocity boundary conditions are prescribed on all walls. The dynamics
are governed by the same set of Eqs. (16)–(18) as in the 2D case from
Section 4.1.3.
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Fig. 15. Convergence of average Nusselt number computed on the cold clover-shaped obstacles (left) accompanied with computational times (right).
Fig. 16. Convergence of average Nusselt number computed on the cold clover-shaped obstacles (left) accompanied with computational times (right) for refined discretizations.
Fig. 17. Average Nusselt number calculated on the cold clover shaped obstacles as a function of computational time for a convergence study with a selection of refined and
nrefined discretizations.
Table 4
Peak positions and values of cross section velocities for 3D natural convection test and number of computational elements. The last column
contains the single thread execution times for different discretization strategies.
Method 𝑣𝑧(𝑥max , 0.5, 0.5) 𝑥max 𝑣𝑥(0.5, 0.5, 𝑧max) 𝑧max 𝑁 𝑡 [h]

Hybrid 0.2523 0.960 0.0807 0.133 88 725 5.1
Regular 0.2322 0.956 0.0801 0.133 96 800 3.1
Scattered 0.2592 0.960 0.0817 0.147 81 218 7.9

Slak & Kosec (2019) [3] 0.2564 0.961 0.0841 0.143 64 000 /
Wang et. al (2017) [36] 0.2556 0.965 0.0816 0.140 125 000 /
Fusegi et. al (1991) [30] 0.2588 0.966 0.0841 0.144 238 328 /
In Fig. 18 the results for Pr = 0.71 and Ra = 106 are visualized for
all three discretization variants, namely scattered, regular and hybrid.
A more quantitative analysis is presented in Table 4 by comparing
characteristic values, i.e. peak positions and values of cross section
velocities, with published data.
10

c

As a final demonstrative example of natural convection problems,
we employ the proposed hybrid regular-scattered approximation
method on a three-dimensional irregular domain, where we add to the
domain 𝛺 = [0, 1] × [0, 1] × [0, 1] also 4 randomly positioned and sized

lover-like obstacles 𝛩 defined in Eq. (9).
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Fig. 18. Example of solution of natural convection test using hybrid (left), scattered (middle) and regular (right) nodes in 3D.
Fig. 19. Examples of natural convection in a 3D irregular domain solved using scattered (left) and hybrid (right) nodes. The arrows show the velocity in computational nodes
and are coloured according to the temperature in that node.
To improve the quality of the local field description near the ir-
regularly shaped domain boundaries, ℎ-refinement is employed with a
linearly decreasing internodal distance from ℎ𝑟 = 0.025 (regular nodes)
towards ℎ𝑠 = 0.018 (clover shapes). The clover-shaped obstacles were
set to a constant temperature, two to 𝑇𝐶 = −0.5 and two to 𝑇𝐻 = 0.5.
The Rayleigh number was set to 106.

Although difficult to visualize, an example solution is shown in
Fig. 19. Using the hybrid regular-scattered domain discretization, the
solution procedure was again able to obtain a reasonable numerical
solution, i.e. the difference in Nusselt number between fully scattered
and hybrid approaches is less than 0.5% at the approximately 57%
reduction in computation time in favour of the hybrid approach.

4.2. Boussinesq’s problem

In this section, the proposed solution procedure is demonstrated
on an implicit solution to the three-dimensional Boussinesq’s prob-
lem [37]. In this problem, a concentrated normal traction acts on an
isotropic half-space, as sketched in Fig. 20.

Analytic solution to the problem is given in cylindrical coordinates
𝑟, 𝜃 and 𝑧 as

𝑢𝑟 =
𝑃𝑟
4𝜋𝜇

(

𝑧
𝑅3

− 1 − 2𝜈
𝑅(𝑧 + 𝑅)

)

, 𝑢𝜃 = 0, 𝑢𝑧 =
𝑃
4𝜋𝜇

(

2(1 − 𝜈)
𝑅

+ 𝑧2

𝑅3

)

,

𝜎𝑟𝑟 =
𝑃
2𝜋

(

1 − 2𝜈
𝑅(𝑧 + 𝑅)

− 3𝑟2𝑧
𝑅5

)

, 𝜎𝜃𝜃 =
𝑃 (1 − 2𝜈)

2𝜋

(

𝑧
𝑅3

− 1
𝑅(𝑧 + 𝑅)

)

,
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(20)
𝜎𝑧𝑧 = − 3𝑃𝑧3

2𝜋𝑅5
, 𝜎𝑟𝑧 = −3𝑃𝑟𝑧2

2𝜋𝑅5
, 𝜎𝑟𝜃 = 0, 𝜎𝜃𝑧 = 0,

where 𝑃 is the magnitude of the concentrated force, 𝜈 is the Poisson’s
ratio, 𝜇 is the Lamé parameter and 𝑅 is the Eucledian distance to
the origin. The solution has a singularity at the origin where the
concentrated force is applied to the bulk. This makes the problem
difficult to solve and consequently a good candidate for treatment
with spatially variable node regularity; allowing us to employ h-refined
scattered nodes towards the singularity and regular nodes elsewhere.

We consider only a part of the domain, i.e. 𝜀 away from the singu-
larity yielding 𝛺 defined as a box, i.e. 𝛺 = [−1,−𝜀]× [−1,−𝜀]× [−1,−𝜀],
as schematically shown in Fig. 20. From a numerical point of view, we
solve the Navier-Cauchy equation

(𝜆 + 𝜇)∇(∇ ⋅ 𝒖) + 𝜇∇2𝒖 = 𝒇 , (21)

using the Lamé parameters 𝜆 and 𝜇 with Dirichlet boundary conditions
as given in (20).

Even though the analytic solution is given in cylindrical coordinate
system, the problem is implemented using cartesian coordinates. For
the physical parameters of the problem, the values 𝑃 = −1, 𝐸 = 1 and
𝜈 = 0.33 were used.

To employ the hybrid discretization, a cylinder along the edge
with applied force is assumed. Points inside the cylinder are scattered,
allowing us to employ h-refinement towards the critical edge in the con-
tinuation of this work, while regular nodes are positioned elsewhere.
To determine if a point 𝒑 is inside the cylinder with radius 𝑅 , it’s
0
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Fig. 20. Schematic presentation of Boussinesq’s problem (left) and example spatial distribution of computational node regularity (right). For clarity, black lines have been added
to mark the domain boundary edges on the right plot.
Fig. 21. Convergence analysis using regular, hybrid and scattered discretization in case of Boussinesq’s problem (left) and execution times (right).
perpendicular distance ‖

‖

(𝒙corner − 𝒑) × 𝒆𝑧‖‖ to the edge is computed and
compared to 𝑅0. Here, 𝒙corner is the domain corner closest to the origin,
i.e. 𝒙corner = (−𝜀,−𝜀,−𝜀) and 𝒆𝑧 is a unit vector along the 𝑧 axis. For
clarity, spatial distribution of the computational node regularity and of
the approximation methods are also shown in Fig. 20 (left).

Note that the final sparse system was solved using BiCGSTAB with
ILUT preconditioner, where the global tolerance was set to 10−16 with
a maximum number of 300 iterations and drop-tolerance and fill-factor
set to 10−6 and 60 respectively. Example solution is shown in Fig. 20
(left) with displacement magnitudes on the left and von Mises stress on
the right.

The convergent behaviour and the computational gains offered by
the proposed solution procedure are studied in Fig. 21. The offset
from the origin (𝜀) was fixed and set to 0.1, the scattered node area
was set to 𝑅0 = 0.4, and the h-refinement towards the singularity is
avoided by setting ℎreg = ℎmin for a fair performance comparison of
the different domain discretizations approaches. On the left, we show
the infinity norm error in terms of von Mises stresses. We observe that
using a purely regular discretization, the error is approximately two
times larger compared to fully scattered or hybrid discretizations but
retains a similar convergence rate.

Fig. 21 shows the wall-clock times required to obtain the numer-
ical solutions. The LRBFCM approach with purely regular domain
discretization is clearly the fastest among the three but also the least
accurate. Both hybrid and scattered discretizations show approximately
an order of magnitude (or more) longer wall-clock times with com-
parable accuracy of the numerical solution. Note that the parameter
12
𝑅0 strongly impacts the computational time required for the hybrid
discretization.

In the following set of analyses, the hybrid and scattered discretiza-
tions are employed with a linearly decreasing internodal distance ℎ(𝒑),
from ℎreg (on regular nodes) to ℎmin (on the edge subjected to force 𝑃 )
depending on the perpendicular distance from the edge with applied
force. Thus, the internodal distance ℎ at point 𝒑 is defined with the
following expression:

ℎ(𝒑) = min
{

ℎreg, ℎmin + (ℎreg − ℎmin)
‖

‖

(𝒙corner − 𝒑) × 𝑒̂𝑧‖‖
𝑅0

}

. (22)

In Fig. 22 (left), we study the behaviour in case of different h-
refinement aggressiveness. The numerical solutions are again evaluated
in terms of the infinity norm of the von Mises stress. We show that
the h-refinement towards the edge with applied concentrated force im-
proves the accuracy of the numerical solution by an order of magnitude
for both purely scattered and hybrid domain discretization approaches
shown for different 𝑅0. We did not encounter any stability related
issues in the process – even for the most aggressive h-refinement
used, i.e. ℎreg∕ℎmin = 15. On the other hand the accuracy reaching a
plateau with increasing refinement provides an insight into the trade-
offs inherently present in the hybrid method. Once the refined part
of the domain is discretized with a sufficiently large density of nodes
the accuracy becomes bounded by the regular part of the domain. The
error plateau exhibited by the scattered and hybrid methods, otherwise
discretized for the same 𝑅0 = 0.4, directly reflects the difference in
method accuracy observed in Fig. 21. With decreasing 𝑅 , the relatively
0
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Fig. 22. The impact of h-refine aggressiveness on the maximum error of von Mises stress for scattered and hybrid discretizations with different 𝑅0 (left) and the maximum von
ises stress as a function of distance 𝜀 between the singularity and the outer edge of the domain (right).
Fig. 23. Maximum error of von Mises stress as a function of computational time for a convergence study with a selection of refined and unrefined discretizations.
eak LRBFCM method is used to discretize areas ever closer to the
ingularity leading to larger errors irrespective of how well the area
n the immediate vicinity of the corner is discretized.

In Fig. 22 (right) we show a brief study of hybrid and fully scattered
iscretization approaches with respect to the domain corner distance 𝜀
o the singularity that is present in the origin. As expected, the accu-
acy of the numerical solutions decreases for smaller distances 𝜀 and
mproves for larger values. It is worth mentioning, that h-refinement
ollowing Eq. (22) was used in the process. We used ℎreg = (1 − 𝜀)∕40
nd ℎmin = ℎreg∕5.

Finally, we can leverage the insights gathered from discretization
arameter analysis to repeat the convergence study with a refined
cattered and hybrid discretization. We chose 4 configurations to anal-
se: scattered with 𝑅0 = 0.4, ℎreg

ℎmin
= 8 as the most accurate, hybrid

with 𝑅0 = 0.2, ℎreg
ℎmin

= 2 as the fastest and hybrids with 𝑅0 = 0.3,
ℎreg
ℎmin

= 4 and 𝑅0 = 0.4, ℎreg
ℎmin

= 4 as middle ground. The results
for error as a function of computational time are shown in Fig. 23,
confirming the expected discretization rankings in both accuracy and
execution time. All refined discretizations provide lower error than the
regular and scattered constant density solutions at a comparable or
lower computational time. In this case a hybrid discretization provides
significant time reduction compared to a scattered discretization if we
are somewhat willing to compromise on accuracy. Once the discretiza-
tion is sufficiently refined, the regular part dominates the error and we
13
would be better served by replacing LRBFCM with a more accurate,
albeit expensive, approximation for the regular part of the hybrid.

5. Conclusions

In this paper we proposed an improvement in terms of computa-
tional efficiency for the numerical treatment of problems in which most
of the domain can be discretized with regular nodes, while scattered
nodes are used only near irregularly-shaped domain boundaries. First,
we introduced an algorithm for 𝑛-dimensional ℎ-refined meshless node
placement that, based on user input, discretizes different regions either
with scattered or with regular nodes. We showed that such an approach
does not degrade the quality of generated nodes by means of analysing
the separation distance and maximal empty sphere radius width of
generated nodes.

The remainder of the paper is dedicated to demonstrating how the
proposed hybrid regular-scattered discretization performs in different
problems. We combined the regular nodes with LRBFCM, a fast but sen-
sitive method, and scattered nodes with RBF-FD, expensive but robust
method. With such a setup we solved the de Vahl Davis natural convec-
tion and Boussinesq’s contact problems, in 2D and 3D. We showed that
the proposed hybrid regular-scattered discretization can significantly
contribute to the computational efficiency, while introducing minimal
to no cost regarding the accuracy of the numerical solution.

Further analysis is required regarding the selection of an appropri-

ate approximation method for the regular part to avoid the regular
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part dominating the error as in some of the refined Boussinesq’s cases.
Additionally, the scattered node layer width and the aggressiveness of
ℎ-refinement near the irregularly shaped domain boundaries should be
investigated, as both affect the computational efficiency and stability of
the solution procedure. Future work should also include more difficult
problems, such as mixed convection problems and a detailed analysis of
possible surface effects, e.g. scattering, at the transition layer between
the scattered and regular domains.
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