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Abstract Local meshless methods using RBFs augmented with monomials have become increasingly
popular, due to the fact that they can be used to solve PDEs on scattered node sets in a dimension-
independent way, with the ability to easily control the order of the method, but at a greater cost to
execution time. We analyze this ability on a Poisson problem with mixed boundary conditions in 1D,
2D and 3D, and reproduce theoretical convergence orders practically, also in a dimension-independent
manner, as demonstrated with a solution of Poisson’s equation in an irregular 4D domain. The results
are further combined with theoretical complexity analyses and with conforming execution time measure-
ments, into a study of accuracy vs. execution time trade-off for each dimension. Optimal regimes of order
for given target accuracy ranges are extracted and presented, along with guidelines for generalization.

Keywords meshless methods · RBF-FD · Poisson’s equation · n-dimensional · convergence rates ·
optimal order

1 Introduction

The Radial Basis Function-generated Finite Differences (RBF-FD), a local strong form mesh-free method
for solving partial differential equations (PDEs) that generalizes the traditional Finite Difference Method
(FDM), was first mentioned by Tolstykh [32]. Since then, the method has become increasingly popular [9],
with recent uses in linear elasticity [31], contact problems [28], geosciences [8], fluid mechanics [14],
dynamic thermal rating of power lines [20], advection-dominated problems [21,25], financial sector [22],
etc.

RBF-FD, similarly to other mesh-free methods, relies on approximation of differential operators
on scattered nodes, which is an important advantage over mesh-based methods, as node generation is
considered much easier than the mesh generation. In fact, mesh generation is often the most cumbersome
part of the solution procedure in traditional methods, which, especially in 3D geometries, often requires
significant assistance from the user. When meshless methods were first developed, many solutions used
available mesh generators for generating discretization nodes and discarding the connectivity information
after the mesh had been generated [16]. Such approach is computationally wasteful, does not generalize
to higher dimensions, and some authors even reported that it failed to generate distributions of sufficient
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quality [26]. Since then, various node positioning algorithms have been proposed. Popular algorithms use
iterative approaches [12,17], advancing front methods [7,18] or sphere packing methods [5]. In 2018, a
pure meshless algorithm based on Poisson disk sampling [4] was introduced. Later that year, the first
dimension-independent node generation algorithm that supported distributions with spatially variable
density appeared [30], where the authors also demonstrated the stability of RBF-FD on scattered nodes,
even for complex non-linear problems in 3D without any special treatment of stencil selection as proposed
in [23]. Instead, a cluster of nearest neighboring nodes proved to be a satisfactory stencil that can also
be efficiently implemented in dimension-independent code, using specialized data structures, such as k-d
tree [35].

A common drawback of often used RBFs, such as Gaussians or Hardy’s multiquadrics, is that they
include a shape parameter that crucially affects accuracy and stability of the approximation [33]. If the
shape parameter is kept constant, the method converges, but stability issues arise when computing in the
standard basis, due to high condition numbers of the collocation matrices. To fix the stability issue, more
sophisticated algorithms can be used, such as RBF-CP, RBF-QA, RBF-GA and others [34], but such
methods sometimes add significant additional costs. A simpler solution for the stability issue is to scale the
shape parameter so that the product of the shape parameter and the nodal spacing is constant. However,
this can lead to local approximations that are not convergent - this phenomenon has been called lack of
convergence due to stagnation errors [6]. Stagnation can be fixed by adding monomial terms that ensure
consistency up to a certain order. This technique has been used together with Polyharmonic splines (PHS)
as RBFs, which have an additional advantage of not having a shape parameter [3]. In addition, the order
of added monomials directly effects the order of the RBF-FD approximation, effectively enabling control
over the convergence rate of the RBF-FD [2]. Various successful applications of RBF-FD with PHS have
since been demonstrated, both in 2D and in 3D [26,30,3]. The dimensional independence has already
been noted by, e.g., Ahmad et al. [1], but the high order RBF-FD has not yet been thoroughly analyzed
with computational efficiency in mind, as the authors were more focused on solving the time-dependent
part of the PDE of interest.

Although the RBF-FD formulation is dimension-independent, in the sense that the same formulation
can be used in 1D, 2D, 3D and higher, translating this elegant mathematical formulation and algorithms
into actual efficient computer code is far from trivial. In this paper, we present a dimension-independent
PDE solution procedure based on our in-house dimension-agnostic implementation [29] of RBF-FD. By
dimension-agnostic implementation we refer to the fact that exactly the same code can be used to solve
problems in one, two, three or more dimensional spaces, while values of parameters are optimised for
each dimension separately. The paper describes all solution procedure elements in detail and presents a
thorough analysis of accuracy and execution time in one, two and three dimensions, on a Poisson problem
on scattered nodes with mixed boundary conditions. To fully illustrate the dimension independence, a
solution of a 4-dimensional problem on an irregular domain is presented. A C++ implementation of all
discussed solution elements is freely available for download [13].

The rest of the paper is organized as follows: In section 2, the RBF-FD solution procedure is presented,
in section 3, the model problem is investigated, in section 4, an additional example is shown, and in
section 5, the conclusions are presented.

2 RBF-FD solution procedure

In this section, the main steps of the RBF-FD solution procedure are described. First, the domain is
populated with scattered nodes. Once the nodes are positioned, in each discretization node the approxi-
mation of the partial differential operator is performed, resulting in stencil weights. Finally, in the PDE
discretization phase, the PDE is transformed into a system of linear equations, whose solution stands for
a numerical solution of the considered PDE.

2.1 Positioning of nodes

In the node generation algorithm, candidate nodes are generated on a d-sphere in a d-dimensional space.
This effectively means that the node positioning algorithm remains the same for every number of dimen-
sions. However, some parameters, e.g. the number of candidates, can be optimized for various numbers
of dimensions.
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Fig. 1 Node positioning algorithm during candidate generation phase.

The node positioning algorithm takes as an input a domain Ω ⊂ Rd with a spacing function h : Ω →
(0,∞) and optionally a list of arbitrary starting “seed nodes” X ⊂ Ω, often distributed along the
boundary. It returns a set of nodes that are suitable for strong-form discretizations and distributed over
Ω with mutual spacing around a point p approximately h(p).

The algorithm used in this paper processes nodes in the input list in order. For each node p, a number
of expansion candidates distributed uniformly on a sphere centered at p, of radius h(p), are examined. If
a candidate is inside the domain and sufficiently away from the already processed nodes, it is accepted
and added to the list X. During the course of the algorithm, the list X is implicitly partitioned into
already processed nodes, the current node, and future queued nodes. Figure 1 shows this partition at a
selected iteration in 2D and 3D, along with the generated candidates from the current node, and flags
the accepted ones.

Once all the elements of the list X have been processed, X is returned as the resulting set of dis-
cretization nodes. Further details and analyses of the algorithm are available in [30]. The stand-alone
implementation of the algorithm is available online [27] and also included as a part of our in-house
implementation of RBF-FD, the Medusa library [29].

2.2 Approximation of partial differential operators

Consider a partial differential operator L at a point xc. Approximation of L at a point xc is sought using
an ansatz

(Lu)(xc) ≈
n∑
i=1

wiu(xi), (1)

where xi are the neighboring nodes of xc which constitute its stencil, wi are called stencil weights, n is
the stencil size and u is an arbitrary function.

This form of approximation is desirable, since operator L at point xc is approximated by a linear
functional wL(xc)T, assembled of weights wi,

L|xc
≈ wL(xc)T (2)

and the approximation is obtained using just a dot product with the function values in neighboring
nodes. The dependence of wL(xc)T on L and xc is often omitted, with wL(xc)T written simply as w.

To determine the unknown weights w, equality of (1) is enforced for a given set of basis functions.
A natural choice are monomials, which are also used in FDM, resulting in the Finite Point Method [24].
However, using monomial basis suffers from potential ill conditioning [19]. An alternative approach is
using an RBF basis.

In the RBF-FD discretization, the equality is satisfied for radial basis functions φj . These are RBFs,
generated by a function φ : [0,∞)→ R, centered at neighboring nodes of xc, given by

φj(x) = φ(‖x− xj‖). (3)
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Each φj , for j = 1, . . . , n, corresponds to one linear equation
n∑
i=1

wiφj(xi) = (Lφj)(xc) (4)

for unknowns wi. Assembling these n equations into matrix form, we obtain the following linear system:φ(‖x1 − x1‖) · · · φ(‖xn − x1‖)
...

. . .
...

φ(‖x1 − xn‖) · · · φ(‖xn − xn‖)


w1

...
wn

 =

(Lφ(‖x− x1‖))|x=xc

...
(Lφ(‖x− xn‖))|x=xc

 , (5)

where φj have been expanded for clarity.
The above system can be written more compactly as

Aw = `φ. (6)

The matrix A is symmetric, and for some basis functions φ even positive definite [33].
Many commonly used RBFs, such as Hardy’s multiquadrics or Gaussians, depend on a shape param-

eter, which governs their shape and consequently affects the accuracy and stability of the approximation.
In this work, we use polyharmonic splines (PHS), defined as

φ(r) =

{
rk, k odd
rk log r, k even

, (7)

to eliminate the need for a shape parameter tuning where r denotes the Euclidean distance between
two nodes. Without monomial augmentation, local approximations using only PHS are not convergent,
nor do we have any guarantees of solvability. However, if the approximation given by (5) is augmented
with polynomials, we obtain convergence and conditional positive definiteness, provided that the stencil
nodes form a polynomially unisolvent set [33]. Augmentation is performed as follows: Let p1, . . . , ps be
polynomials forming the basis of the space of d-dimensional multivariate polynomials up to and including
total degreem, with s =

(
m+d
d

)
. In addition to the RBF part of the approximation, an exactness constraint

s∑
i=1

wipj(xi) = (Lpj)(xc) (8)

for monomials, is enforced. These additional constraints make the approximation overdetermined, which
is treated as a constrained optimization problem [6]:

min
w

(
1

2
wTAw −wT`φ

)
, subject to PTw = `p. (9)

For practical computation, the optimal solution can be expressed as a solution of a linear system

[
A P

PT 0

][
w
λ

]
=

[
`φ
`p

]
, P =

p1(x1) · · · ps(x1)
...

. . .
...

p1(xn) · · · ps(xn)

, `p =

(Lp1)|x=xc

...
(Lps)|x=xc

 , (10)

where P is a n×s matrix of polynomials evaluated at stencil nodes, `p is the vector of values assembled by
applying the considered operator L to the polynomials at xc, and λ are Lagrange multipliers. Weights
obtained by solving (10) are taken as approximations of L at xc, while values λ are discarded. The
system (10) is solvable if the stencil nodes form a polynomially unisolvent set. This could potentially
be problematic near the boundary, where it might happen that all stencil nodes would be e.g. colinear
or coplanar, but experience shows that this happens only with stencil sizes which are too small to be
a feasible approximation. With large enough stencil sizes, stencils near the boundary always include at
least some internal nodes. We did not use any special techniques to ensure unisolvency, and did not run
into any unisolvency-related issues.

The exactness of (8) ensures convergence behavior and control over the convergence rate, since the
local approximation has the same order as the polynomial basis used [3], while the RBF part of the
approximation (5) takes care of potential ill-conditioning in purely polynomial approximation [6].
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2.3 PDE discretization

Consider the boundary value problem

Lu = f in Ω, (11)
u = gd on Γd, (12)

n · ∇u = gn on Γn, (13)

with ∂Ω = Γd ∪ Γn, where the union is disjoint. The domain Ω is discretized by placing N scattered
nodes xi with quasi-uniform internodal spacing h, of which Ni are in the interior, Nd on the Dirichlet
and Nn on the Neumann boundary. Additionally, Ng ghost or fictitious nodes are added outside the
domain on both Neumann and Dirichlet boundary, by translating the Nd and the Nn nodes on ∂Ω for
distance h in the normal direction.

In the next step, stencils N (xi) consisting of neighboring nodes are selected for each node xi. The
most common approach is to compute stencils automatically, by taking n closest nodes for each node
(including the node itself) as its stencil.

Next, partial differential operators appearing in the problem, such as L and ∂i, are approximated at
nodes xi, using the procedure described in section 2.2. The computed stencils wL and w∂i are stored
for later use.

For each interior node xi, the equation (Lu)(xi) = f(xi) is approximated by a linear equation

wL(xi)
Tu = f , (14)

where vectors f and u represent values of function f and unknowns u in stencil nodes of xi. For each
Dirichlet boundary node xi, we have the equation

ui = gd(xi). (15)

For Neumann boundary nodes xi, the linear equation

d∑
j=1

njw∂j (xi)
Tu = gd (16)

approximates the boundary condition, where similarly to before, vectors gd and u represent values of
function gd and unknowns u in stencil nodes of xi. Another set of Ng equations is needed to determine
the unknowns introduced by ghost nodes. Additionally to (15) and (16), we also enforce (14) to hold for
boundary nodes.

All Ni + Nd + Nn + Ng equations are assembled into a sparse system with n(Ni + Nn + Ng) + Nd
non-zero elements in general. The solution uh of this system is a numerical approximation of u, excluding
the values obtained in ghost nodes.

2.4 Note on implementation

We implemented the solution procedure described in this section in C++ using object oriented approach
and C++’s strong template system to achieve modularity and consequent dimension independence. The
strongest advantage of the presented method is that all building blocks, namely node positioning, stencil
selection, differential operator approximation and PDE discretization, are independent and can therefore
be elegantly coded as abstract modules, not knowing about each other in the core of their implementation.
To ease the implementation of the solution procedure, additional abstractions, such as operators, basis
functions, domain shapes and approximations, are introduced, acting as interfaces between the main
blocks. For example, to construct a RBF-FD approximation, one combines the RBF basis class with
an augmented RBF-FD class, computes stencil weights and supplies the computed weights into the
“operators” class that enables the user to explicitly transform governing equations into the C++ code,
as demonstrated in the listing 1.

Vector and scalar fields are implemented as plain arrays, using a well developed linear algebra li-
brary [11] that also implements or otherwise supports various direct and iterative linear solvers. Please,
refer to our open source Medusa library [29] for more examples and features.
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// Define differential operator approximation.
Monomials<vec> mon(m);
Polyharmonic<double, k> ph;
RBFFD<decltype(ph), vec, ScaleToFarthest> appr(ph, mon);

// Compute stencil weights (shapes) with RBF-FD.
auto storage = domain.computeShapes<sh::lap|sh::d1>(appr);
Eigen::SparseMatrix<double, Eigen::RowMajor> M(N, N);
M.reserve(storage.supportSizes());
Eigen::VectorXd rhs(N); rhs.setZero();

// Prepare "operators" abstraction.
auto op = storage.implicitOperators(M, rhs);

// PDE discretization.
// Interior.
for (int i : interior) {

op.lap(i) = f_lap(domain.pos(i));
}
// Dirichlet boundary.
for (int i : dir) {

op.value(i) = f(domain.pos(i));
op.lap(i, gh[i]) = f_lap(domain.pos(i));

}
// Neumann boundary.
for (int i : neu) {

op.neumann(i, domain.normal(i)) = f_grad(domain.pos(i));
op.lap(i, gh[i]) = f_lap(domain.pos(i));

}

Listing 1: A part of dimension-independent source code showing definition and sparse system assembly.

3 Numerical example

The behavior of the proposed solution procedure and its implementation are studied on a Poisson problem
with mixed boundary conditions. The aim is to analyze accuracy and convergence properties in one, two
and three dimensions. Furthermore, theoretical computational complexity is discussed and supported by
experimental measurements of execution time, which allows us to quantify the accuracy vs. execution
time trade-off.

The problem is solved on an irregular domain Ω, defined as Ω = (B0 ∪B1) \ (B2 ∪B3), where

B0 =

{
x ∈ R4,

∥∥∥∥x− 1

2

∥∥∥∥ < 1

2

}
, (17)

B1 =

{
x ∈ R4,

∥∥∥∥x− 1

5

∥∥∥∥ ≤ 1

4

}
, (18)

B2 =

{
x ∈ R4,

∥∥∥∥x− 1

2

∥∥∥∥ ≤ 1

10

}
and (19)

B3 =

{
x ∈ R4, ‖x− 1‖ ≤ 1

2

}
(20)

are balls in Rd. For later use, the boundary ∂Ω is divided into Γd and Γn, the left and the right half of
the boundary, respectively

Γd =

{
x ∈ ∂Ω, x1 <

1

2

}
, (21)

Γn =

{
x ∈ ∂Ω, x1 ≥

1

2

}
. (22)
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3.1 Governing equation

Numerical solution uh of Poisson’s equation with both Dirichlet and Neumann boundary conditions is
studied:

∇2u(x) = flap(x) in Ω, (23)
u(x) = f(x) on Γd, (24)
∇u(x) = fgrad(x) on Γn. (25)

Here, the right hand side was chosen as

f(x) =
E(x)

g(x)
, (26)

where

E(x) = exp
( d∑
i=1

xaii

)
, g(x) = 1 + xTHx, ai = 2 + i, (27)

H is a Hilbert matrix of size d, and êi is the i-th unit vector. The values of Laplacian and the gradient
are computed from f as

flap(x) =
8E(x)

g(x)3
(Hx)T(Hx)− 2E(x)

g(x)2

[
2(Hx)T(

d∑
i=1

aix
ai−1
i êi) + Tr(H)

]

+
E(x)

g(x)

[ d∑
i=1

ai(ai − 1)xai−2i + (

d∑
i=1

aix
ai−1
i êi)

T(

d∑
i=1

aix
ai−1
i êi)

]
, (28)

fgrad(x) =
E(x)

g(x)

[ d∑
i=1

aix
ai−1
i êi −

2

g(x)
(Hx)T

]
. (29)

The closed-form solution f of the above problem is a rational non-easily separable function allowing us
to validate the numerically obtained solution uh. The computed uh is only known at discretization points
xi. The errors between uh and u are measured in three different norms:

e1 =
‖uh − u‖1
‖u‖1

, ‖u‖1 =
1

N

N∑
i=1

|ui|, (30)

e2 =
‖uh − u‖2
‖u‖2

, ‖u‖2 =

√√√√ 1

N

N∑
i=1

|ui|2, (31)

e∞ =
‖uh − u‖∞
‖u‖∞

, ‖u‖∞ = max
i=1,...,N

|ui|. (32)

The problem (23–25) is studied in d ∈ {1, 2, 3} dimensions. Scattered computational nodes are gen-
erated using a dimension-agnostic node positioning algorithm described in section 2.1. Ghost nodes
were added to both Dirichlet and Neumann boundaries, and are excluded from any post-processing. An
example of node distribution is shown in figure 2.

Numerical results are computed using RBF-FD with PHS radial basis function φ(r) = r3 and mono-
mial augmentation, as described in section 2. Radial function was kept same for all cases; however, various
orders of monomial augmentation were tested. For each dimension d, solution to the problem is obtained
using monomials up to and including degree m, for m ∈ {−1, 0, 2, 4, 6, 8}, where m = −1 represents a
pure RBF case with no monomials added. Only even orders of m were used, because the same order of
convergence is observed with odd powers, but at a higher computational cost [6].

Stencils for each node were selected by taking the closest n nodes, where n was equal to two times
the number of augmenting monomials, as recommended by Bayona [3], or at least a FDM minimum of
2d+ 1, i.e.

n = max

{
2

(
m+ d

d

)
, 2d+ 1

}
. (33)
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m d = 1 d = 2 d = 3

-1 3 5 7
0 3 5 7
2 6 12 20
4 10 30 70
6 14 56 168
8 18 90 330

Table 1 Support sizes in different dimensions for various augmentation orders.

Specific values for m, n and d are presented in table 1.
BiCGSTAB with ILUT preconditioner was used to solve the sparse system. Global tolerance was

set to 10−15 with a maximum number of 500 iterations, while the drop tolerance and fill-factor were
dimension dependent: 10−4 and 20 for d = 1, 10−4 and 30 for d = 2, and 10−5 and 50 for d = 3,
respectively.

Figure 2 shows three examples of computed numerical solution uh for each domain dimension d.
The solutions are shown for various values of m and for small enough values of N to also show nodal
distributions.

Fig. 2 Computed numerical solution uh for d = 1, 2, 3, from left to right. Chosen highest polynomial degree m and node
count N are as follows: N = 64 and m = 4 for d = 1, N = 1286 and m = 2 for d = 2 and N = 3850 and m = 4 for d = 3.

In the top row of figure 3 global sparse matrices are shown. Additionally, spectra of the Laplacian
differentiation matrices for cases shown in figure 2 are shown in the bottom row of figure 3, to better assess
the approximation quality. For all three cases, the eigenvalues have negative real parts with relatively
small spread around the imaginary axis.

3.2 Convergence rate

When using RBF-FD augmented with monomials, consistency is ensured up to order m, which makes
the expected convergence rate of at least O(hm). Here, h denotes the nodal spacing, which is inversely
proportional to d

√
N .

Figure 4 shows e1, e2 and e∞ errors for various augmentation orders in two dimensions. The three
errors have very similar values and similar convergence rates. Convergence rates were estimated by
computing the slope of a least-squares linear trend line over the appropriate subset of the data. Divergence
is observed in the m = 0 and the m = −1 case, which is consistent with properties of PHS RBFs. These
two cases are excluded from any further analyses in this paper.

In the rest of the discussion, only e∞ is used for convergence analysis, since it measures the lowest
convergence rates and does not involve averaging, contrary to e1 and e2.

Figure 5 shows the e∞ error for d = 1, d = 2, and d = 3 dimensions. The span of the horizontal
axis was chosen in such a way that the total number of nodes in the largest case was around N = 105

8



Fig. 3 Plots of global sparse matrices (top row) and spectra of the Laplacian differentiation matrices (bottom row),
corresponding to the solutions in figure 2.

101 102

2√
N

10−12

10−10

10−8

10−6

10−4

10−2

100

102

e l
1

k = −2.23

k = −4.55

k = −6.77

k = −8.35

101 102

2√
N

e l
2

k = −2.24

k = −4.63

k = −7.00

k = −8.54

101 102

2√
N

e l
∞

k = −2.19

k = −4.65

k = −6.75

k = −8.42

m = 2 m = 4 m = 6 m = 8 m = −1 m = 0

Fig. 4 Errors between analytical solution u and numerically obtained uh, measured in three different norms. Computed
are e1, e2 and e∞, from left to right, respectively, for the d = 2 dimensional case.

in all dimensions. The observed convergence rates are independent of domain dimension and match the
predicted order O(hm).

All of the plots in the d = 1 case eventually diverge, due to the errors in finite precision arithmetic,
as previously noted for interpolation by Flyer et al. [6]. The dotted line in the d = 1 case shows the ε/h2
line, where ε ≈ 2.22 · 10−16. The numerically obtained solution for the d = 3 and m = 8 case is unstable
for smaller N . For higher node counts N , the expected convergence behavior is obtained, as seen from
the fitted dashed line.
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102 104

1√
N

10−13

10−10

10−7

10−4

10−1

e l
∞

d = 1

k = −1.91

k = −4.03

k = −6.33

k = −7.49

101 102

2√
N

d = 2

k = −2.14

k = −4.77

k = −6.69

k = −8.40

101

3√
N

d = 3

k = −1.55

k = −4.12

k = −6.10

k = −8.32

m = 2 m = 4 m = 6 m = 8

Fig. 5 Convergence rate of e∞ for all domain dimensions d = 1, 2, 3, from left to right, respectively.

3.3 Computational efficiency

The importance of several different stages of uh computation is studied. The computational procedure
is divided into
– node positioning, where quasi-uniform placing of nodes in the domain Ω and the domain boundary
∂Ω, including positioning of Ng ghost nodes, takes place. Node positioning time also includes finding
the stencils for each node in the domain,

– stencil weights computation, where basis functions are defined and shapes for the Laplace operator
and first derivatives are stored,

– system assembly, where computed weights are assembled in a sparse matrix and its right-hand side
is computed and

– system solution, where the sparse system is solved.

3.3.1 Computational complexity

The theoretical computational complexity is analyzed in this section. The total number of nodes will be
denoted as Nt = N +Ng; however, as Ng nodes are distributed only along the boundary, it holds that
Ng = O(N

d−1
d ) and thus Nt = O(N).

The node positioning algorithm has complexity O(Nt logNt) [30]. Finding stencils of n closest nodes
takes O(nNt logNt) time, using a fast spatial search structure, such as a k-d tree. The computation of
stencils weights performs Nt solutions of linear systems of size (n + s) × (n + s), where s =

(
m+d
d

)
is

the number of monomials used for augmentation. Since n was chosen to be at least 2s, it holds that
s = O(n). Using LU decomposition or any other standard solution procedure for dense linear systems
takes O((n+ s)3) = O(n3) time. The total cost of weight computation is therefore O(n3Nt).

With appropriate pre-allocation of storage for the sparse matrix, system assembly takes linear time
in number of stencil nodes for each node, and right hand-side computation taken O(1) per node. The
total cost of system assembly is thus O(nNt).

The solution of the sparse system uses iterative BiCGSTAB with ILUT preconditioner, whose speed
of convergence depends on the matrix properties.

The time complexity of the complete procedure is

O(nNt logNt + n3Nt) + T,

where T is the complexity of the sparse solver.
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3.3.2 Execution time

In this section, we measure execution time spent on different parts of the solution procedure. All com-
putations were performed on a single core of a computer with Intel(R) Xeon(R) CPU E5-2620 v3 @
2.40GHz processor and 64 GB of DDR4 memory. Code was compiled using g++ (GCC) 8.1.0 for Linux
with -O3 -DNDEBUG flags.

Total execution times are shown in figure 6 and correspond to accuracy results in figure 5. The
computational time grows with N and with m, as expected from theoretical predictions in section 3.3.1.
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Fig. 6 Median of 10 total execution times of uh computation for various setups.

Absolute times of different computation stages and their proportions to the total time are shown in
figure 7, on the left and the right side, respectively. The observed growth rates match the theoretical
complexities predicted for node positioning, weight computation and system assembly.

Relative execution times provide additional insight into the execution of the solution procedure and
into optimization and parallelization opportunities. The majority of the computational time is usually
spent on either computing the stencil weights (for smaller N) or on system solution (for large N). Similar
behavior was observed for other m and in other dimensions, with different percentage of total time spent
on node positioning, weight computation and system solution [15].

3.4 Accuracy vs. execution time

In the previous sections, we have shown that using higher orders, both accuracy and execution time
increase. In this section, we analyze the accuracy vs. execution time trade-off. Figure 8 shows e∞ error
plotted with respect to the total computational time needed to achieve it.

Significant differences can be observed between different orders of monomial augmentation. For pro-
totyping or any other sort of quick scanning of how or if the computed solution uh converges, using
polynomials of a lower degree is undeniably very beneficial – the computation of uh takes little time, but
at a cost of limited accuracy. When higher accuracy is required, using polynomials of a higher degree
can lead to a several orders faster computation time. In some cases, using higher orders might even be
a necessity, e.g. for d = 2, where accuracy of e∞ ≈ 10−10 is reached the fastest by m = 8, while solution
for m = 2 would require N out of reasonable computing capabilities. The findings are summarized in
table 2.
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Fig. 8 Accuracy vs. execution time trade-off for different orders of monomial augmentation.

d = 1 d = 2 d = 3

target accuracy e∞ optimal m target accuracy e∞ optimal m target accuracy e∞ optimal m

100 to 10−4 2 100 to 10−2 2 100 to 10−1 2
10−4 to 10−6 4 10−2 to 10−5 4 10−1 to 10−3 4
10−6 to 10−8 6 10−5 to 10−8 6 10−3 to 10−5 6
10−8 to 10−13 8 10−8 to 10−12 8 10−5 to 10−7 8

Table 2 Optimal setups for various desired target accuracy ranges in 1, 2 and 3 dimensions.

Using the data in the table, we can extract a rough general recommendation. As a rule of thumb, for
the desired accuracy e∞ = 10−k and dimension d, the recommended order of augmentation is

m =
5

4
k +

4

5
d− 2, (34)
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rounded to the nearest positive even integer. Even though the data points in the table are close to being
planar, the formula (34) does not necessarily generalize well. A more general rule is that the order of
monomials should be increased with every two to three orders of increase in accuracy, and that higher
order augmentation should be more aggressively used in higher dimensions.

4 Additional example

In addition to already solved cases, we now demonstrate a solution of a 4-dimensional Poisson prob-
lem (23–25). The irregular domain Ω is now defined as Ω = B0 \ (B1 ∪B2 ∪B3), where

B0 =

{
x ∈ R4,

∥∥∥∥x− 1

2

∥∥∥∥ < 1

2

}
, (35)

B1 =

{
x ∈ R4,

∥∥∥∥x− (1

2
, 1,

1

2
,
1

2

)∥∥∥∥ ≤ 1

4

}
, (36)

B2 =

{
x ∈ R4, ‖x− 0‖ ≤ 13

16

}
and (37)

B3 =

{
x ∈ R4,

∥∥∥∥x− (1

2
,
1

2
,
3

4
,
1

2

)∥∥∥∥ ≤ 1

8

}
(38)

are balls in R4.
Dirichlet and Neumann boundary conditions are defined similarly to before, i.e., Γd is the left half and

Γn is the right half of ∂Ω. Additionally, the boundary of the smallest ball ∂B3 is added to the Dirichlet
boundary:

Γd =

{
x ∈ ∂Ω, x1 <

1

2

}
∪ ∂B3, (39)

Γn =

{
x ∈ ∂Ω, x1 ≥

1

2

}
\ ∂B3. (40)

Scattered computational nodes were positioned using the same dimension-agnostic node positioning
algorithm as before. A numerical solution uh was obtained using RBF-FD with PHS φ(r) = r3 augmented
with polynomials of degree m = 4, according to our rule of thumb (34) for the desired accuracy e∞ =
10−2.

Approximately N = 85000 nodes were positioned in Ω and closest n = 950 nodes were selected
as stencils for each node from the domain. Ghost nodes were, as in the previous case, added to both
Dirichlet and Neumann boundaries, and excluded from any post-processing. The final system was solved
using a direct sparse solver.

Figure 9 shows the numerically obtained solutions. Four three-dimensional slices are shown, defined
by setting one coordinate to xi = 1/2. Modified Sheppard’s interpolation algorithm [10] was used to
interpolate the solution to an intermediate grid, used for plotting the slices.

The solution is well-behaved even in 4 dimensions; however, a relatively large support size is needed
to obtain a desirable numerical stability. The errors equal to e1 = 6.83 · 10−4, e2 = 2.11 · 10−3 and
e∞ = 1.72 · 10−2. The total computational time spent was approximately 15 hours.

5 Conclusions

The message of this paper is twofold. First, we demonstrated that it is possible to design an appropriately
abstract implementation, which encompasses most of the meshless mathematical elegance, allowing the
user to construct a high order dimension-independent solution procedure. To fully demonstrate the
dimensional independence, we also presented a solution of a 4-dimensional Poisson’s problem on an
irregular domain with both Neumann and Dirichlet boundary conditions.

Second, we used the devised implementation to analyze the increasing execution time that comes
tied with high order augmentation, to determine the conditions of optimal computation efficiency for a
desired target accuracy.
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Fig. 9 3-dimensional cross sections of a solution to a 4-dimensional Poisson problem.

The analyses are performed on the solution of a Poisson problem with mixed boundary conditions
in one, two and three dimensions. To avoid shape parameter dependency, we used PHS augmented with
monomials as RBFs. Scattered nodes were positioned with a dedicated dimension-agnostic node genera-
tion algorithm. The theoretical findings on how the highest order of the augmenting polynomial directly
controls the approximation rate of the RBF-FD independently of the domain dimension are verified. A
detailed breakdown of the computational complexity and the execution time of different computational
stages is also provided, to ensure that the implementation agrees with the theoretical predictions. Finally,
the high order vs. execution time trade-off is analyzed and the findings are summarized in figure 8 and
table 2. While the analyses were done only for this particular problem, the results can be generalized in
the sense that for a high target accuracy, a high order method is a better choice, and vice versa.

Another interesting point are the increasing stencil sizes required for high order methods, as shown
in table 1. Especially in higher dimensions, this cost quickly becomes unmanageable. Therefore, our
future work will be focused primarily on better understanding of the impact of the stencil size on the
approximation quality.
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