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Abstract—When the deformations of a solid body are
sufficiently large, parts of the body undergo a permanent
deformation commonly refereed to as plastic deformation.
Several plasticity models describing such phenomenon have
been proposed, e.g. von Mises, Tresca, etc. Traditionally,
the finite element method (FEM) is the numerical tool of
choice for engineers who are solving such problems. In this
work, however, we present the implementation of the von
Mises plasticity model with non-linear isotropic hardening in
our in-house developed MEDUSA library, utilizing a variant
of meshless methods – namely the radial basis function-
generated finite differences (RBF-FD). We define a simple
plane stress case, where a 2D block is fixed at one edge, and
a tensile force, which causes the block to deform, is applied
to it at the opposite edge. We show that results are in good
agreement with the numerical solution obtained by Abaqus
FEA, a commercial FEM solver.

Index Terms—plasticity; meshless; radial basis function-
generated finite differences

I. INTRODUCTION

Speaking very broadly, a deformation of a solid body
can be broken down into two main sub-categories: elastic
and plastic deformation. It is said, that the deformation
is elastic, if the body returns to its original shape after
the applied load had been released, while plastic defor-
mation occurs when any part of a solid body undergoes
a non-reversible change of shape due to sufficiently large
load applied [1]. Generally, the material response beyond
the elastic-plastic tipping point, commonly referred to
as yielding criterion, is non-linear [2], thus numerical
treatment of partial differential equations is required [2].

Traditionally, such problems are solved with the finite
elements method (FEM) [3]–[6]. In this work, however,
we employ meshless methods that have proven to be a
good alternative as they can operate on nodes contrary
to mesh-based methods that require meshes [7]. An of-
ten used variant of the meshless methods is the radial
basis function-generated finite differences (RBF-FD) [8],
which has already been employed to obtain solutions to
elasticity [9], [10] and plasticity [11], [12] problems.

We present our implementation of a von Mises plastic-
ity model with non-linear isotropic hardening limited to
small strains in a plane stress example. The implementa-
tion was done using our in-house developed MEDUSA
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C++ library [13] supporting all the required meshless
procedures. The original FEM formulation of the solution
procedure provided by the de Souza et al. [2] is adapted to
employ RBF-FD and used to solve a simple plane stress
problem.

II. PLASTICITY

Plasticity problems, where an external force acts on a
solid body, are usually solved by applying partial loads
to the system i.e. the external force is applied incremen-
tally [2], [14]. At each increment of the external force one
first predictably solves the steady-state Navier-Cauchy
equation for elastic bodies, and corrects the solution if
the plastic yield criterion is violated. This section will
present the small-strain plasticity model for plane stress
cases. The steady state Navier-Cauchy equation can thus
be written with Lamé constants as:(

2λµ

λ+ 2µ
+ µ

)
∇(∇ · u) + µ∇2u = −r, (1)

where u = (ux, uy) is the displacement vector. λ =
Eν

(1−2ν)(1+ν) and µ = E
2(1+ν) are the Lamé parameters,

which depend on Young’s modulus E, and Poisson’s
ratio ν. r is the residual force density. The latter is
computed as the difference between internal and external
force densities: r = f i − fe. Internal force density is
defined as:

f i = ∇ · σ, (2)

where σ is the stress tensor with components: σxx, σyy,
and σxy = σyx. Other components are assumed to equal
0 when assuming plane stress. For simplicity σ can be
reshaped into a vector σ = (σxx, σyy, σyx). σ is related to
u via the elastic strain tensor εE and the elastic stiffness
tensor D as σ = DεE . εE can be reshaped as εE =
(εExx, ε

E
yy, 2ε

E
yx), and then D becomes:

D =

2µ+ 2λµ
λ+2µ

2λµ
λ+2µ 0

2λµ
λ+2µ 2µ+ 2λµ

λ+2µ 0

0 0 µ

 . (3)

In plasticity εE is a part of total strain tensor ε =
(εxx, εyy, 2εyx) = εE + εP , where εP = (εPxx, ε

P
yy, 2ε

P
yx)

is the irreversible plastic strain. ε is computed as:

ε =
∇u+ (∇u)ᵀ

2
. (4)
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As the force is increased incrementally by δfe, Eq. (1)
is used to compute the displacement increment δu. Thus
after n increments un = un−1 + δu. After finding un

with the elastic prediction, one computes σ, and checks
the yield criterion, in this case the von Mises criterion
Φ [2]:

Φ =
1

2
σᵀPσ − 1

3
σ2
Y (εPeq) =

1

2
ξ − 1

3
σ2
Y (εPeq), (5)

where εPeq is the scalar, “equivalent” plastic strain, and
σY is the likewise scalar yield stress, and is defined by
the yield function. It can be noted, that von Mises stress
is σVM =

√
3
2σ

ᵀPσ. P is defined as:

P =
1

3

 2 −1 0
−1 2 0
0 0 6

 . (6)

Where the yield criterion is violated (Φ > 0), σ is then
corrected via a local Newton-Rhapson method. Let there
be a correction factor δγ. First it is set to δγ = 0, then
the solver updates it with:

δγnew = δγold − Φ

Φ′
. (7)

Φ′ = 1
2ξ
′ − 1

3H
′ is the derivative of the yield criterion,

where:

ξ′ = − (σxx + σyy)2

9
(

1 + Eδγ
3(1−ν)

)3 E

1− ν
−2µ

(σyy − σxx)2 + 4σ2
xy

(1 + 2µδγ)3
,

(8)

H ′ = 2

√
2

3
H

[√
ξ +

δγξ′

2
√
ξ

]
σY

(
εPeq + δγ

√
2
ξ

3

)
. (9)

H is the slope of σY at εPeq + δγ
√

2 ξ3 . Afterwards ξ is
updated:

ξ =
(σxx + σyy)2

6
(

1 + Eδγ
3(1−ν)

)2 +
(σyy − σxx)2 + 4σ2

xy

2(1 + 2µδγ)2
. (10)

Φ (Eq. (5)) is also updated, and Eqs. (7)–(10) are iterated
over until the yield criterion is satisfied (|Φ| < tolerance).
This is the local iteration.

With computed δγ the variables are updated as:

σnew = Aσold,

εE = D−1σnew,

εP new
eq = εP old

eq + δγ

√
2
ξ

3
,

εP new = εP old + δγPσnew.

(11)

A is a δγ dependent tensor, defined as:

A =

 1
2 (a1 + a2) 1

2 (a1 − a2) 0
1
2 (a1 − a2) 1

2 (a1 + a2) 0
0 0 a2

 , (12)

where a1 = 1−ν
1−ν+ 1

3Eδγ
, and a2 = 1

1+2µδγ . With variables
updated, f i is updated via Eq. (2), and used in Eq. (1)
to recompute δu. This is repeated until |r| < tolerance.
This is the global iteration. Once the global iteration is
completed, fe is increased by δfe. The whole process is
repeated until fe equals the prescribed value.

Such approach, where D remains unchanged through-
out the computation, requires many global iterations. This
can be improved by exchanging the elastic stiffness tensor
with the consistent tangent operator, which is updated by
the local iteration [2], [14]. However, for simplicity this
is not explored in this work.

III. RBF-FD APPROXIMATION OF DIFFERENTIAL
OPERATORS

Often mentioned advantage of the mesh-free methods
over the mesh-based methods is that they can operate
on scattered nodes. This is particularly convenient when
complex three-dimensional domains are being treated,
because in such cases, automated mesh generation is even
today impossible without a human interference. While
there are also other advantages, such as direct control
over the approximation order, it is important to know that
in general, mesh-free methods are computationally more
complex because larger support sizes are needed.

Since the emergence of mesh-free methods, many
approximation variants have been proposed. The first
mentions of RBF-FD reach back in 2000 with the intro-
duction from Tolstykh [15]. Since then, the method has
been thoroughly studied and applied to numerous real-life
problems.

In the context of RBF-FD, a linear differential operator
L (for example operators in the Navier-Cacuhy equa-
tion (1)) is approximated in node xc over set of n nearby
nodes

L̂u(xc) =

n∑
i=1

wiu(xi) (13)

for an arbitrary function u. A set of n neighboring nodes
is often also referred to as the stencil nodes or support
nodes. The unknown weights w are obtained for a given
set of radial basis functions (RBFs) φ centered at the
stencil nodes of a central node xc

φ(x) = φ(‖x− xc‖). (14)

The approximation (13) can then be written in a linear
systemφ1(x1) · · · φn(x1)

...
. . .

...
φ1(xn) · · · φn(xn)


︸ ︷︷ ︸

Φ

w1

...
wn


︸ ︷︷ ︸

w

=

(Lφ1(x)
∣∣
x=xc

...
(Lφn(x)

∣∣
x=xc


︸ ︷︷ ︸

`φ

.

(15)
While researchers in the early work on RBF-FD used
infinitely smooth RBFs, such as Gaussians or Mul-

258
Authorized licensed use limited to: Institute Jozef Stefan. Downloaded on December 07,2022 at 07:38:21 UTC from IEEE Xplore.  Restrictions apply. 



Figure 1. The sketch of the test case. The arrows on the east side
represent the tensile stress. The red dashed line represents the results
sampling line, used in later analyses. It runs from the south-west corner,
to the north-east one.

tiquadrics, nowadays, piecewise smooth polyharmonic
splines (PHS)

φ(r) =

{
rk, k odd
rk log r, k even

(16)

are commonly used. These, however, do no ensure the
convergent behavior nor solvability of the system [8]. That
is handled by additionally enforcing the constraint (13) for
a set of s =

(
m+d
d

)
monomials with up to and including

degree m in a d-dimensional domain.
With the additional constraints, the approximation can

be compactly written as[
Φ P
P T 0

] [
w
λ

]
=

[
`φ
`p

]
, (17)

where P is an n × s matrix of monomials evaluated at
stencil points, `p is the vector of values assembled by
applying the considered operator L to the polynomials
at xc, i.e `ip = (Lpi(x))

∣∣
x=xc

and λ are Lagrangian
multipliers. Finally, the weights w to approximate a
differential operator L can be obtained by solving the
system (17) using a standard solver from the Eigen library
and Lagrangian multipliers are discarded.

IV. EXAMPLE

For demonstration purposes, a simple plane stress prob-
lem is solved. We chose a 2D block (a rectangle), attached
to a solid wall on the west edge (u = (0, 0)) and pulled
by a tensile stress on the east edge (σxx = 30 MPa), with
remaining edges being traction-free (n · σ = 0, where n
is the face normal), as is shown by the sketch in Fig. 1.

The tensile stress acts as the external force on the
system, and is increased in steps of equal magnitude, as
prescribed by the model input. Dimensions of the block
are as follows: length L = 10 mm, and height H = 5 mm.
Material properties in this case are chosen arbitrarily,
and are: E = 10 GPa, ν = 0.4, and a yield function
σY (εPeq) defined by the following set of points (εPi , σY i):
(0, 20 MPa), (0.001, 25 MPa), (0.005, 30 MPa), (0.02,
40 MPa) with a piecewise linear interpolation in-between.

The results of computations are analyzed along the
red dashed line, which is also shown on the sketch in
Fig. 1. As meshless discretization is used, the results along
the line are interpolated using the Sheppard interpolation
from Python’s photutils package. To stabilize the
computations, and to reduce computational time, the case

Figure 2. The sketch of the reduced case. See Fig. 1 for details. The
sampling line is composed of two parts, and is reflected at x = L/2. The
asymmetrical variables (uy , and σxy) are transformed by the following
function: u(x) = −u, x < L/2;= u, x ≥ L/2.

TABLE I. DIFFERENT DISCRETIZATION DENSITIES dx
L

, AND
CORRESPONDING NUMBER OF GENERATED NODES IN A DOMAIN.

dx
L

[−] No. nodes

1
19

110

1
49

659

1
99

2585

1
149

5745

1
199

10204

1
249

15876

1
299

22852

is further simplified by reducing the domain size along
the symmetry line (uy = 0, ∂ux

∂y = 0), producing the
problem setup to that shown in Fig. 2. To stabilize the
computations even further, the corner nodes at Neumann
boundary conditions (traction boundaries) are removed.

The computations are performed at different discretiza-
tion resolutions, and different amount of load steps to
display the model’s convergence. Details on discretization
resolutions are presented in Table I. Results are computed
for each discretization, using Nload ∈ {5, 10, 50, 100} load
steps.

The entire implementation is written in C++, using our
in-house developed MEDUSA library [13]. MEDUSA’s
built-in fill and relax algorithms [16] are used to create
the uniform irregular computational domains. Differential
operators are approximated with the RBF-FD and com-
puted using the support of n = 50 nearest points. Eq.
(1) is solved implicitly with the BiCGSTAB solver from
the Eigen library for linear algebra [17]. In the main
loop, the implicit solver operates sequentially, but local
operations, such as computation of stress tensor σ, and
the local iterations are executed in parallel with OpenMP.
The compiling is done with the g++ compiler, us-
ing the following flags: -Wall -O3 -march=native
-fopenmp -std=c++17. The results were exported to
text-VTK files, and processed with Python and ParaView.
Computations were performed on a laptop, with an Intel
Core i7-8750H CPU, and 16 GB DDR4 RAM.

For comparison and validation purposes, the same prob-
lem is also solved using the commercial software Abaqus
FEA, which utilizes FEM. Abaqus solution is obtained
with the full domain setup (Fig. 1) using NFE = 5000
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8-node biquadratic plane stress quadrilateral (CPS8R)
finite elements resulting in total of 15301 nodes. Finite
element type CPS8R was chosen to obtain a finite element
with 4 integration points and thus reducing the error
of mapping the secondary variables to nodal values and
additionally avoiding the potential Hourglass and shear
locking issues. Reduced integration mode additionally
reduces the computational times.

V. RESULTS

Example results of computations are shown in Figs. 3
and 4. Fig. 3 is displaying the σxx field on the discretized
domain, with nodes displaced by 50u. A higher stress
concentration can be observed in the north-western corner
of the domain, which is surrounded by areas of lower σxx
stress, which then homogenizes along the body toward
the eastern edge. In Fig. 4 it can be observed, how the
material begins to yield, as it deforms plastically – more
drastic deformation increases can be observed after first
couple of linear-elastic steps.

Figure 3. Visualization of the solution in a domain with 2585 nodes after
10/10 load steps. The nodes are displaced by 50u, and the color-map
is showing σxx.

Figure 4. Visualization of the solution in a domain with 22852 nodes,
showing the boundary nodes positions, displaced by 50u, at load steps
1/10 - 10/10.

The model’s convergence by increasing the node den-
sity can be seen in Fig. 5, and in Fig. 6 is showing the
load-step dependent convergence for u at low (659 nodes)
discretization density.

The solution with N = 10204 computational nodes
and Nsteps = 100 load steps is compared with the Abaqus
FEA solution along the aforementioned diagonal. The
comparison is made for solutions of u (Fig. 7), and σ
(Fig. 8). In both cases the absolute difference plotted
on the log scale represents ∆u = |umedusa − uabaqus|,
where indices “medusa” and “abaqus” are representing
the meshless and Abaqus solutions, respectively.

Finally, all points from meshless (the same case as
previously) and Abaqus solutions are plotted on the σVM
against εPeq graph along with the yield function in Fig. 9,
to analyze how well they follow the yield function.

(a) ux

(b) uy

Figure 5. Solution convergence due to varying discretization density. ux
and uy plotted against dimensionless coordinate x/L, Nsteps = 10.

The convergence plots in Fig. 6 show that the quality
of the solution may increase by increasing the number
of load steps, but at higher density discretizations this
may be insignificant. Finding the balance between dis-
cretization density and number of load steps for optimal
accuracy and computational time is beyond the scope of
this paper.

The comparison between the presented implementation
of von Mises plasticity model with the commercial solver
Abaqus (Figs. 7 and 8) shows good agreement between
both solutions. This is shown by closely matched solution
for u as is shown in Fig. 7, and a similar σ prediction
in Fig. 8. One should note however, that the meshless
domain had the corner nodes removed to stabilize the
computation, which resulted in greater difference between
the two solutions especially at 0 x-coordinate. The differ-
ence between the two solutions for σ decreases as one is
going up the x-coordinate, except for the corner node, for
reasons mentioned above. The decrease in the difference
is likely due to σxx being prescribed at x = L through the
traction boundary condition, and both approaches fulfill it
well. A source of error, which may contribute to the noisy
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(a) ux, 259 nodes.

(b) uy , 259 nodes

Figure 6. Solution convergence due to varying number of load steps
N density. ux and uy plotted against dimensionless coordinate x/L,
results for 259 nodes.

nature of the absolute difference plots, is the interpolation,
which was used in post processing to extract the data
along the prescribed lines.

Fig. 9 is showing that the implemented plasticity model
closely follows the yield function. However, some of the
values obtained by both approaches appear to be violating
the yield criterion. In the meshless case these points are
located on the fixed edge, and in Abaqus’ case these are
at both singularities at the fixed edge or in their close
proximity.

VI. CONCLUSION

This work demonstrates the use of RBF-FD in mod-
eling small-strain plasticity. Under the plane stress as-
sumption, a simple 2D problem is solved, using the
von Mises plasticity model. For comparison, an identical
problem is also solved in Abaqus, which uses FEM.
Results show good agreement between both approaches.
The analyzed example case also indicates that increasing
the number of load steps may stabilize the solution in
a scarcely populated domain, whereas this effect is not
as pronounced in a densely populated one. Generally it

(a) ux

(b) uy

Figure 7. Comparison of both components of u, and the absolute differ-
ence between Medusa and Abaqus results plotted against dimensionless
coordinate x/L.

can be concluded that RBF-FD can substitute FEM for
solving similar small-strain plasticity problems.
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