
A hybrid RBF-FD and WLS mesh-free strong-form
approximation method

Mitja Jančič
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Abstract—Since the advent of mesh-free methods as a tool for
the numerical analysis of systems of Partial Differential Equa-
tions (PDEs), many variants of differential operator approxima-
tion have been proposed. In this work, we propose a local mesh-
free strong-form method that combines the stability of Radial
Basis Function-Generated Finite Differences (RBF-FD) with the
computational effectiveness of Diffuse Approximation Method
(DAM), forming a so-called hybrid method. To demonstrate the
advantages of a hybrid method, we evaluate its computational
complexity and accuracy of the obtained numerical solution by
solving a two-dimensional Poisson problem with an exponentially
strong source in the computational domain. Finally, we employ
the hybrid method to solve a three-dimensional Boussinesq’s
problem on an isotropic half-space and show that the imple-
mentation overhead can be justified.

Index Terms—mesh-free methods, hybrid, RBF-FD, WLS,
strong-form

I. INTRODUCTION

In recent years, mesh-free methods [1] have been increas-
ingly used to obtain a numerical solution to a system of PDEs.
They are computationally more complex than traditional mesh-
based methods, but the fact that they can operate on scattered
nodes makes them very desirable, especially when complex
three-dimensional domains are considered.

Since the advent of mesh-free methods in the 1970s, many
different variants have been proposed, such as the Finite Point
Method [2], the Generalized Finite Difference Method [3], the
Diffuse Approximation Method (DAM) [4] and the Radial
Basis Function-Generated Finite Differences (RBF-FD) [5],
to name but a few of the most commonly used, with recent
research exploiting parallelism opportunities offered by a
modern computer architecture [6].

While the RBF-FD is known for its high stability, DAM,
also known as the Weighted Least Squares (WLS) approach,
is known for its low computational complexity. Moreover, the
WLS approach has been shown to be incredibly stable for
low order approximations but has stability issues for higher
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order approximations [7]. On the contrary, the RBF-FD is
stable even for higher order approximations. Thus, the aim
of this paper is to combine the advantages of the RBF-FD
variant (namely the stability) with the computationally efficient
WLS variant by proposing a novel hybrid WLS – RBF-FD
method. This method essentially splits the stencils into two
separate sets: One that use the WLS approximation approach
to approximate the differential operators and another one, that
uses the RBF-FD approximation approach.

The stability and computational complexity of the proposed
hybrid method are studied on a solution to a two-dimensional
Poisson problem with an exponentially strong source [8]. In
addition, we also provide a solution to a three-dimensional
Boussinesq’s problem of the concentrated normal traction
acting on an isotropic half-space [9], [10]. We show that the
hybrid method is more stable than the pure WLS variant and
computationally cheaper than the pure RBF-FD variant.

II. SOLUTION PROCEDURE EMPLOYING MESH-FREE
METHODS

To obtain a numerical solution û to a system of PDEs,
three steps are required. First, the computational domain Ω
is discretized using a dedicated node positioning algorithm
that supports a spatially variable nodal distribution [11] with
a quasi-uniform internodal spacing h. An example of nodal
distribution is shown in Figure 1. A parallelized version of
the same algorithm was recently published in [12], however,
parallel execution is already out of the scope of this paper.

After discretizing the domain, the differential operators are
approximated. A detailed procedure on differential operator
approximation in the context of mesh-free methods is de-
scribed in the following Section III.

In the final step, the system of PDEs is discretized in spatial
and temporal sense, resulting in a global system of linear
equations. The system is solved and its solution is proclaimed
as the numerical solution û of a considered system of PDEs,
of course, subject to given initial and boundary conditions.
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Fig. 1. An example of numerical solution of a Poisson problem on scattered
nodes.

III. LINEAR DIFFERENTIAL OPERATOR APPROXIMATION IN
THE CONTEXT OF MESH-FREE METHODS

Consider a d-dimensional domain Ω ⊂ Rd with a set of
N discretization points {xj}Nj=1. In the context of mesh-free
methods, a linear differential operator L in any node xc ∈ Ω
is approximated over a set of neighboring nodes

L̂u(xc) =
n∑

i=1

wiu(xi) (1)

for an arbitrary function u, weights wi yet to be determined
and support domain size n also called stencil size. It has been
reported that a well-designed stencil can significantly reduce
the computational cost [13], but, usually, as is also the case
in this paper, the closest n nodes are chosen as the stencil to
a central node xc.

The weights from equation (1) are calculated for a given set
of s basis functions {pj}sj=1. In the Diffuse Approximation
Method, a set of monomials p1, . . . , ps with up to and includ-
ing degree m with s =

(
m+d
d

)
are used as the approximation

basis. This essentially means that the approximation (1) can
be compactly written as

Pw = ℓp, (2)

where matrix P is a n× s matrix of monomials evaluated at
stencil nodes,

P =

p1(x1) · · · ps(x1)
...

. . .
...

p1(xn) · · · ps(xn)

 (3)

and ℓp is the vector of values assembled by applying the
considered operator L to the monomials at a central point
xc

ℓip = (Lpi(x))
∣∣
x=xc

. (4)

When the number of basis functions is equal to the stencil
size (s = n), the described formulation yields a quadratic

system of equations. Experience shows that the choice of
larger support sizes (n > s) can be advantageous for accuracy
and stability reasons. This leads to an overdetermined linear
system, which is usually treated as a minimization of the
Weighted Least Squares (WLS) norm. In the remainder of
this paper, the above approximation approach, using only
monomials as basis functions, will be referred to as the WLS
approximation approach or WLS method.

Note that the same approximation procedure (1) can also
be used for any other commonly chosen basis functions, such
as Multiquadrics, Gaussians, Radial Basis Functions (RBFs).
In this paper we focus on two different types of basis: the
already presented approach with monomials only and the
approach using Polyharmonic Splines (PHS) augmented with
monomials. The latter leads to a RBF-FD variant of the mesh-
free methods described in the following section.

A. The mesh-free RBF-FD variant

We now take RBFs φ(x) = φ(∥x− xc∥) centered at the
stencil nodes of a central node xc. The approximation (1) then
takes a compact form

Φw = ℓφ (5)

for matrix Φ of evaluated radial basis functions

Φ =

φ(∥x1 − x1∥) · · · φ(∥xn − x1∥)
...

. . .
...

φ(∥x1 − xn∥) · · · φ(∥xn − xn∥)

 (6)

and ℓφ is the vector of values assembled by applying the
considered operator L to the RBFs at central point xc

ℓiφ = (Lφ(∥x− xi∥)
∣∣
x=xc

. (7)

Different RBFs can be used. To avoid the dependency on a
shape parameter, we choose Polyharmonic splines (PHS)

φ(r) =

{
rk, k odd
rk log r, k even

, (8)

where r denotes the Eucledian distance between two nodes.
However, the approximation with a pure RBF basis guarantees
neither convergent behavior nor solvability. To mitigate these
problems, the approximation is augmented with a monomial
basis by additionally enforcing an exactness constraint for
monomials, as we did in equation (2). This ensures convergent
behavior and also allows us to control the order of the
approximation, since the approximation order is the same as
the order of the augmented monomials. This procedure finally
results in a compactly written system[

Φ P

PT 0

] [
w
λ

]
=

[
ℓφ
ℓp

]
(9)

with Lagrangian multipliers λ. The system (9) is overdeter-
mined and treated as a constraint optimization problem [14].
The weights are obtained by solving the system, while La-
grangian multipliers are discarded.
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B. Hybrid WLS–RBF-FD approximation approach

The local RBF-FD systems (9) are clearly larger than the
purely monomial systems (2), making the RBF-FD method
computationally more expensive. Therefore, our aim is to
combine the computational efficiency of WLS approach with
the high stability of RBF-FD variant to a create a novel hybrid
method.

The hybrid method has an additional step in the solution
procedure, where we need to specify which stencils N (xi) use
the WLS approach to approximate the differential operators
and which the RBF-FD. This step essentially splits the N
discretization nodes of Ω into two parts: NWLS nodes whose
stencils use WLS and N RBF-FD nodes whose stencils use RBF-
FD, where N RBF-FD +NWLS = N .

Assigning a particular approximation type to a particular
stencil is not a trivial task. The aim of a hybrid method is to
ultimately result in numerical method that is more stable than
the pure WLS and computationally less complex than the pure
RBF-FD. Therefore, the RBF-FD approximation is naively
assigned only to nodes with a high error of the numerical
solution û expectancy, while the rest are approximated with
the WLS approach.

Normally, error indicators, such as ZZ-type [15], are used
in such cases. Although using an error indicator makes the
most sense and would probably lead to better results, in this
paper we make the decision a priori.

From an implementation point of view, only a small amount
of overhead is required to implement a hybrid method. The
biggest and practically only extra effort we have is when a
global system is being assembled, because the sizes of WLS
local systems (2) and RBF-FD local systems (9) do not match.
Additional zero values have to be assigned in the global
matrix to compensate for the mismatching sizes of the local
approximations.

Note on the implementation

All elements and corresponding functionality used in this
paper are available as part of the Medusa library [16].

IV. RESULTS

In this section, an overview of the results is provided. We
first study the proposed hybrid method on a two-dimensional
Poisson problem with an exponentially strong source in the
domain. In particular, we focus on the convergence rates
and shape computation times. Finally, as a proof of concept,
a three-dimensional Boussinesq’s problem is solved in Sec-
tion IV-B.

All calculations were performed on a single core of a com-
puter with Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz
processor and 64 GB of DDR4 memory. The code1 was com-
piled with g++ (GCC) 9.3.0 for Linux with -O3 -DNDEBUG
flags. The sparse system is solved using the single-threaded
LU solver, unless otherwise specified.

1Source code is available at https://gitlab.com/e62Lab/public/
cp-2022-splitech-hybrid-engine under the tag v1.1.

A. Two-dimensional synthetic example

The proposed hybrid method is studied by solving a syn-
thetic example. We choose a two-dimensional elliptic PDE
problem, i.e. a d = 2 dimensional Poisson problem, with
non-constant Dirichlet boundary conditions in domain Ω. This
example is usually used to test adaptive algorithms [8].

The problem is governed by

∇2u(x) = flap(x) in Ω, (10)
u(x) = f(x) on ∂Ω, (11)

where the domain Ω is a two-dimensional unit disc and the
right-hand side is chosen to have an exponentially strong
source

f(x) = exp(−α ∥x− xs∥2), (12)

where α determines the strength of the source (for a strong
source α = 103) and xs = 1/2 is the location of the source.
The Laplacian of f(x) can also be calculated analytically

flap = 4(α2 ∥x− xs∥2 − α) exp(−α ∥x− xs∥2). (13)

An example solution is shown in Figure 1. The above
problem has an analytical solution u(x) = f(x), which
allows us to evaluate the accuracy of the numerically obtained
solution û in terms of the infinity norm error e∞.

The domain Ω was filled with N scattered nodes with
a variable node distribution that ensures the best local field
description in the neighborhood of the strong source. In this
work, the nodal distribution is given by

h(x) = min(dx+ (Dx− dx) ∥x− xs∥3/2 , dx), (14)

for dx = Dx/5 and 30 different values of Dx.
The problem was solved using all three previously described

mesh-free variants, i.e. with the WLS approach using only
monomials up to and including degree m ∈ {2, 4, 6}, with the
RBF-FD approach using Polyharmonic splines of order k = 5
additionally augmented with monomials up to and including
the same order m, and finally with a hybrid WLS–RBF-FD
with the same approximation order. The stencil size n was
determined according to the recommendations of Bayona [17]
for a stable RBF-FD approximation

n = 2

(
m+ d

d

)
. (15)

The division of the nodes into NRBF-FD RBF-FD nodes and
NWLS WLS nodes was done a priori without an error indicator.
The largest error of the numerical solution is expected in the
neighborhood of the exponentially strong source. We therefore
define a circle with radius rs = 0.15 around the strong source
xs. All the stencils with a central node xc less than rs from
the source are approximated using the more stable RBF-FD
approach, while the rest use the WLS approximation. An
example of the distribution of approximation types within the
hybrid method is shown in Figure 2.
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Fig. 2. An example of different approximation methods used within the hybrid
WLS–RBF-FD method.

1) Convergence rates: In this paper, the error of the nu-
merical solution is evaluated in computational nodes in terms
of the infinity norm

e∞ =
∥û− u∥∞
∥u∥∞

, ∥u∥∞ = max
i=1,...,N

(16)

because it shows the lowest convergence rates and, unlike
the 2-norm, does not require averaging. After the solution
is obtained, the computational nodes are discarded and the
domain is discretized again with the same internodal spacing
function h. With the new discretization, the shapes must
be recomputed, which essentially allows us to evaluate the
dependence of the approximation method on the quality of the
node positioning. The process is repeated Nruns = 100 times,
every time resulting in an approximately the same number of
discretization nodes N .

The convergence zones for three different approximation
orders and three different mesh-free variants are shown in
Figure 3. In the case of a low order approximation (m = 2), we
can immediately see that all three approximation methods are
stable, with the smallest spread around a median of the infinity
error norm clearly belonging to the WLS approach. The fact
that the lower order WLS approximations are more stable with
the WLS variant was already observed by Jančič [7]. Higher
order approximations (m = 4 and m = 6), however, are more
stable with the RBF-FD. The stability is further evaluated in
Figure 4, making the advantages of a hybrid method in case
of a higher order approximation even more evident.

2) Computational times: Another advantage of the hybrid
method is that it is computationally cheaper than the pure
RBF-FD approximation. This is demonstrated in Figure 5,
showing the average shape calculation time for 10 runs.
We can clearly see that the pure RBF-FD approximation
is computationally expensive, while the WLS approach is

computationally more efficient and the hybrid method is
somewhere in-between - depending on the NRBF-FD/N ratio.

B. Benchmark example

As a benchmark case, we chose to solve a three-dimensional
Boussinesq’s problem of the concentrated normal traction
acting on an isotropic half-space [9], [10]. The problem is
governed by the Cauchy-Navier equations

(λ+ µ)∇(∇ · u) + µ∇2u = f (17)

with unknown displacement vector u, external body force f
and Lamé parameters

λ =
Eν

(1− 2ν)/(1 + ν)
and (18)

µ =
E

2(1 + ν)
, (19)

for Young modulus E = 1 and Poisson ratio ν = 0.33.
For domain Ω we take a three-dimensional box

Ω =
{
(x, y, z) ∈ R3,−0.1 ≤ (x, y, z) ≥ −1

}
(20)

and discretize it using h-refinement towards the corner xs =
(−0.1,−0.1,−0.1) where force P with magnitude 1 in the
−êz direction is applied. The discretization resulted in a total
of N = 18849 discretization points.

The problem has a closed form solution [9] for displace-
ments u(x) = u(x, y, z)

ux(x) = x
P

4πµ

(
z

∥x∥3
− 1− 2ν

∥x∥ (∥x∥+ z)

)
(21)

uy(x) = y
P

4πµ

(
z

∥x∥3
− 1− 2ν

∥x∥ (∥x∥+ z)

)
(22)

uz(x) =
P

4πµ

(
z2

∥x∥3
+

2(1− ν)

∥x∥3

)
(23)

allowing us to calculate the infinity norm error in terms of the
displacement magnitude.

To solve the sparse system, BiCGSTAB with ILUT precon-
ditioner was used. The global tolerance was set to 10−14 with
a maximum number of 500 iterations, while the drop tolerance
and fill factor were 10−5 and 30 respectively.

Results are computed using all three variants described
previously, i.e. WLS (with Gaussian weights using σ = 1.5,
essentially increasing the importance of nodes further away
from the central stencil node), RBF-FD and a hybrid version
of both with rs = 0.5, for monomials of order m = 4 and
PHS of order k = 5. A visual representation of the solution
obtained with the hybrid method is shown in Figure 6, while
a comparison of important numerical data is given in Table I.

We see that the novel hybrid method was able to obtain
a numerical solution of sufficient quality. It is also clear
from Table I that RBF-FD was able to achieve the best
accuracy - approximately two orders of magnitude better
than the hybrid method, but more importantly, the pure WLS
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Fig. 3. Convergence rates for WLS approximation approach (blue), RBF-FD approximation approach (green) and a novel hybrid approximation approach
(red) for low order approximations m = 2 (left) and higher order approximations m = 4 (middle) and m = 6 right.

Fig. 4. Normalized spread around a median infinity norm error after Nruns = 100 for WLS approximation approach (blue), RBF-FD approximation approach
(green) and a novel hybrid approximation approach (red) for low order approximations m = 2 (left) and higher order approximations m = 4 (middle) and
m = 6 right.

TABLE I
COMPARISON TABLE FOR THE SOLUTION OF BOUSSINESQ’S PROBLEM.

Approximation e∞ tshape [s] NRBF-FD/N · 100
WLS NaN 4.74 0.00

RBF-FD 9.48·10−5 8.22 100.00

hybrid 2.37·10−3 6.15 34.28

approximation approach field to converge. This observation is

of great importance, because it justifies the effort required to
implement a hybrid method. It is also important to observe that
less than 35 % of the nodes from the hybrid method used the
RBF-FD approximation approach, which is already enough
to outperform the WLS in terms of stability and precision,
and small enough to outperform the RBF-FD in terms of
computation time, reducing it by about 33 %.

V. CONCLUSIONS

A novel WLS–RBF-FD mesh-free method combining the
RBF-FD and WLS variants is presented. We demonstrate that
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Fig. 5. Shape computation times for WLS approximation approach (blue),
RBF-FD approximation approach (green) and a hybrid WLS–RBF-FD ap-
proximation approach (red).

Fig. 6. Example benchmark case. Numerical solution obtained with the
proposed WLS–RBF-FD hybrid method.

we can combine the advantages of the two commonly used
mesh-free variants with only a small amount of additional
work justified for the higher order (m > 2) approximations.

Using a two-dimensional synthetic example with expo-
nentially strong source, we show that the newly proposed
hybrid method can be successfully used to obtain a numerical
solution. We also demonstrate that the hybrid method is indeed
computationally cheaper than the pure RBF-FD approach and
more stable than the pure WLS approach for higher order
approximations. Finally, on a solution to the three-dimensional
Boussinesq’s problem of the concentrated normal traction

acting on an isotropic half-space we observe that the WLS
variant fails to converge, while the hybrid WLS–RBF-FD
method converges and reduces the shape computational times
for about 33 % compared to the pure RBF-FD.

In this work, the stencils were a priori divided into RBF-FD
stencils and WLS stencils. We believe that better results could
be obtained by using error indicators.
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