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Abstract—With the immense computing power at our disposal,
the numerical solution of partial differential equations (PDEs) is
becoming a day-to-day task for modern computational scientists.
However, the complexity of real-life problems is such that
tractable solutions do not exist. This makes it difficult to validate
the numerically obtained solution, so good error estimation is
crucial in such cases. It allows the user to identify problematic
areas in the computational domain that may affect the stability
and accuracy of the numerical method. Such areas can then be
remedied by either h- or p-adaptive procedures. In this paper, we
propose to estimate the error of the numerical solution by solving
the same governing problem implicitly and explicitly, using a
different approximation order in each case. We demonstrate the
newly proposed error indicator on the solution of a synthetic two-
dimensional Poisson problem with tractable solution for easier
validation. We show that the proposed error indicator has good
potential for locating areas of high error.

Index Terms—implicit; explicit; error indicator; meshless;
RBF-FD; Poisson equation

I. INTRODUCTION

In physical modelling, systems of partial differential equa-
tions (PDEs) are used to describe the dynamical properties
of many natural phenomena. Moreover, the solution of such
systems is often of interest to engineers and scientists. How-
ever, due to their complexity, they almost never have analytical
solutions, and need to be treated numerically, leading to
a numerical solution. In general, PDE problems are often
solved using one of the following three methods: the finite
volume method (FVM), the finite element method (FEM)
and the finite difference method (FDM). Recently, however,
a generalised formulation of FDM, the radial basis function-
generated finite differences (RBF-FD) [1] [2], has become
increasingly popular. This is mainly because RBF-FD is a
variant of the mesh-free methods [3], i.e. the method can
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operate on scattered nodes, unlike the previously mentioned
mesh-based methods.

In the context of RBF-FD, linear differential operators are
approximated over a set of RBFs augmented with monomials.
Augmentation is necessary to ensure convergent and stable
behaviour of the method [4] [5]. Additionally, it also enables
a direct control over the order of the approximation method, as
it corresponds to the highest order used in the approximation
basis.

Nevertheless, after the numerical solution is obtained, sci-
entists are often confronted with the difficulty of validating it.
For that reason, researchers proposed error indicators [6] [7] to
identify problematic areas with a high error of the numerical
solution. In practise, different adaptive numerical methods are
then applied to these areas [8] ensuring a finer local field
description (h-adaptivity) or higher polynomial degree approx-
imations (p-adaptivity), effectively improving the accuracy of
numerical solution.

In this paper, we present an a posteriori error indicator that
measures the error of an implicit solution. The error indicator
is applied through the meshless RBF-FD method as found
in the Medusa library [9]. In general, the idea is to apply
higher order explicit differential operators approximations to
the implicitly obtained solution and thus indicate the areas
with high error of the numerical solution. In the continuation
of this work, the proposed error indicator will be named IMEX
(implicit-explicit) error indicator.

II. IMEX ERROR INDICATOR

Let there be a partial differential equation of type:

Lu = a, (1)

where L is an arbitrary partial differential operator applied
to u, and equaling the constant a. Such a problem is first
solved implicitly, using a lower-order approximation of L,
L(lo), obtaining the solution u(im) in the process. The u(im) is
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then used to reconstruct a explicitly with the help of higher-
order approximation of L, L(hi), giving a(ex). Finally, a(ex) is
then tested against the analytical a to indicate the error. These
steps can be summarized as follows:

1) compute approximations L(lo) and L(hi);
2) solve L(lo)u = a implicitly, obtain u(im);
3) compute a(ex) = L(hi)u(im);
4) compare a(ex) and a to indicate high error areas.

III. RBF-FD APPROXIMATION OF DIFFERENTIAL
OPERATORS

Since the introduction of meshless methods in the 1970s,
many variants have been proposed. The first mention of RBF-
FD dates from 2000 with the introduction from Tolstykh [1].
Since then, the method has been thoroughly studied and
applied to many real-world problems with recent applications
to fluid flow [10] and plasticity [11] problems.

In the framework of RBF-FD, a linear differential operator
L in the node xc is approximated over a set of n neighbouring
(often called stencil) nodes

L̂u(xc) =
n∑
i=1

wiu(xi) (2)

for an arbitrary function u and weightsw yet to be determined.
The weights w are obtained by constructing a localised RBF
approximation with a given set of radial basis functions (RBFs)
θ centred at the stencil nodes of a central node xc

θ(x) = θ(‖x− xc‖). (3)

The localized intepolation (2) can be written in a linear systemθ(x1) · · · θ(x1)
...

. . .
...

θ(xn) · · · θ(xn)


︸ ︷︷ ︸

Θ

w1

...
wn


︸ ︷︷ ︸

w

=

(Lθ1(x)
∣∣
x=xc

...
(Lθn(x)

∣∣
x=xc


︸ ︷︷ ︸

`θ

. (4)

However, as previously observed by Bayona et al. [4], RBFs
alone do not guarantee convergent behaviour or solvability
of the system. To mitigate these problems, the approximation
basis is extended by a set of s =

(
m+d
d

)
monomials with up

to and including degree m in a d-dimensional domain.
With the additional constraints, the RBF-FD approximation

can be written compactly as[
Θ P
P T 0

] [
w
λ

]
=

[
`θ
`p

]
, (5)

where P is a n× s matrix of monomials evaluated at stencil
points, `p is the vector of values composed by applying the
operator under consideration L to the polynomials at xc, i.e.
`ip = (Lpi(x))

∣∣
x=xc

and λ are Lagrangian multipliers (which
we discard after the solution had been obtained).

IV. EXAMPLE

The IMEX error indicator’s performance is demonstrated on
a synthetic example, which is commonly used when testing
adaptive algorithms in mesh-based methods [12].

The example is the Poisson equation, which is solved in a
2D circular domain Ω with its center at (0, 0), and radius 1:

∇2u = flap(x) in Ω,

du

dn
= fneu(x) on ∂Ω, x ≤ 0,

u = fdir(x) on ∂Ω, x > 0.

(6)

The Neumann, and Dirichlet boundary conditions are defined
through fneu, and fdir, respectively:

fneu(x) = −2α
[
exp

(
−α||x− xs||2

)]
x, (7)

fdir(x) = exp
(
−α||x− xs||2

)
. (8)

From these one can derive the analytical solution of the
Laplacian flap at point x = (x, y):

flap(x) = 4
(
α2||x− xs||2 − α

)
exp

(
−α||x− xs||2

)
. (9)

The source is positioned at xs while α controls the source
strength. n is the boundary normal at x on ∂Ω. xs is
positioned at (0.5, 0.5), and α is set to 1000.

The example was solved on a laptop with Intel Core i7-
8750H CPU, and 16 GB RAM. Results were computed, and
written into a file in about 2 s1.

V. RESULTS AND DISCUSSION

The computational domain is discretized and filled with
scattered nodes using Medusa’s built-in algorithms [9] [13].
This procedure results in a domain discretized with 24882
points. An example solution is shown in Fig. 1. Support
sizes for L(lo), and L(hi) are set to 2

(
m+d
d

)
(following the

recommendations by Bayona et al. [4]), m being the monomial
degree, and d the number of dimensions of the domain. The
system in Eq. (6) is first solved implicitly, with lower order
approximation of differential operators ∇2(lo), and d

dn

(lo)
,

which were obtained with 2nd degree monomials. The solution
for the scalar field u(im) is obtained with Eigen’s BiCGSTAB
solver [14]. To compute the RHS explicitly, a higher order
approximation of the operator ∇2(hi), obtained with 4th degree
monomials, is applied to u(im). The results are then compared
to produce the IMEX error indicator εIMEX :

εIMEX =
∣∣∣∇2(hi)u(im)(x)− flap(x)

∣∣∣ . (10)

For validation purposes, the error of u(im), εan, is also
computed by comparing the implicit to the analytical solution.
The latter is obtained with Eq. (8), and εan is:

εan =
∣∣∣u(im)(x)− fdir(x)

∣∣∣ . (11)

1The source code for the example can be found at: https://gitlab.com/
e62Lab/2022 CP splitech IMEX error indicator poisson eg
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Fig. 1. Domain discretization displaying positions of Neu-
mann, and Dirichlet boundaries, as well as interior nodes.

Fig. 2. An example of the implicit solution.

Fig. 2 is displaying the implicit solution u(im) of Eq. (1),
while εan and εIMEX are plotted in Fig. 3. For better
clarity the implicit solution, εan, and εIMEX are plot-
ted in Fig. 4 along the line y = x; x, y ∈ Ω. As
the solution was obtained on scattered nodes, the source
for the aforementioned line is obtained by Shepard in-
terpolation (Python, ShepardIDWInterpolator from
photutils.utils [15]), sampling each plot line point
from 9 nearest neighbors. Additionally, the same case is solved
with 6th degree monomials used to produce L(hi) for IMEX,

Fig. 3. Comparison plots of εan (above), and εIMEX (below).

with results plotted in Fig. 5.
Comparing Figs. 2, and 3 it is noticeable that the solution’s

error is the biggest around the source at point xs = (0.5, 0.5).
The IMEX error indicator also predicts the biggest error to
be around the same point, as can be seen in Fig. 3. This
is further supported by the graph in Fig. 4. Although the
IMEX error indicator does not follow the actual error, it
successfully identifies the area of the biggest error. Increasing
the monomial degree to compute L(hi) does not noticeably
impact IMEX’s performance, as can be seen by comparing
Fig. 4, and 5. However, increasing the monomial degree results
in a significant compute performance hit in this particular case
(total computation time increased to 4 s, compared to previous
2 s).

VI. CONCLUSIONS

A synthetic example of the Poisson equation was solved
and the IMEX error indicator was tested on it. The error
indicator correctly indicated the area of increased error, which
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Fig. 4. Implicit solution (solution), εan (error), and εIMEX

(IMEX) normalized to their respective maximal values, plotted
along the line y = x; x, y ∈ Ω, L(hi) are computed with 4th

degree monomials.

Fig. 5. Implicit solution (solution), εan (error), and εIMEX

(IMEX) normalized to their respective maximal values, plotted
along the line y = x; x, y ∈ Ω, L(hi) are computed with 6th

degree monomials.

also coincided with the source in the Poisson equation. Re-
sults were produced by increasing the monomial degree of
the explicit approximations by 2 compared to the implicit
counterparts. Further increasing the monomial degree did not
prove beneficial in this specific example.

We show that the proposed error indicator successfully
identifies the areas with high error of the numerical solution.
In the continuation, these findings could be used to adaptively
refine the critical areas and improve the precision of the
numerical solution.
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