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Abstract
We present an algorithm for hp-adaptive collocation-based mesh-free numerical analysis of partial differential equations. 
Our solution procedure follows a well-established iterative solve–estimate–mark–refine paradigm. The solve phase relies 
on the Radial Basis Function-generated Finite Differences (RBF-FD) using point clouds generated by advancing front node 
positioning algorithm that supports variable node density. In the estimate phase, we introduce an Implicit-Explicit (IMEX) 
error indicator, which assumes that the error relates to the difference between the implicitly obtained solution (from the 
solve phase) and a local explicit re-evaluation of the PDE at hand using a higher order approximation. Based on the IMEX 
error indicator, the modified Texas Three Step marking strategy is used to mark the computational nodes for h-, p- or hp-
(de-)refinement. Finally, in the refine phase, nodes are repositioned and the order of the method is locally redefined using 
the variable order of the augmenting monomials according to the instructions from the mark phase. The performance of 
the introduced hp-adaptive method is first investigated on a two-dimensional Peak problem and further applied to two- and 
three-dimensional contact problems. We show that the proposed IMEX error indicator adequately captures the global behav-
iour of the error in all cases considered and that the proposed hp-adaptive solution procedure significantly outperforms the 
non-adaptive approach. The proposed hp-adaptive method stands for another important step towards a fully autonomous 
numerical method capable of solving complex problems in realistic geometries without the need for user intervention.
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1  Introduction

Many natural and technological phenomena are modelled 
through Partial Differential Equations (PDEs), which can 
rarely be solved analytically—either because of geometric 
complexity or because of the complexity of the model at 
hand. Instead, realistic simulations are performed numeri-
cally. There are well-developed numerical methods that 
can be implemented in a more or less effective numerical 
solution procedure and executed on modern computers to 
perform virtual experiments or simulate the evolution of 

various natural or technological phenomena. Nonetheless, 
despite the immense computing power at our disposal, which 
allows us to solve ever more complex problems numerically, 
the development of efficient numerical approaches is still 
crucial. Relying solely on brute force computing often leads 
to unnecessarily long computations—not to mention wasted 
energy.

Most numerical solutions are obtained using mesh-based 
methods such as the Finite Volume Method (FVM), the 
Finite Difference Method (FDM), the Boundary Element 
Method (BEM) or the Finite Element Method (FEM). Mod-
ern numerical analysis is dominated by FEM [1] as it offers a 
mature and versatile solution approach that includes all types 
of adaptive solution procedures [2] and well understood 
error indicators [3]. Despite the widespread acceptance of 
FEM, the meshing of realistic 3D domains, a crucial part of 
FEM analysis where nodes are structured into polyhedrons 
covering the entire domain of interest, is still a problem that 
often requires user assistance or development of domain-
specific algorithms [4].
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In response to the tedious meshing of realistic 3D domains, 
required by FEM, and the geometric limitations of FDM and 
FVM, a new class of mesh-free methods [5] emerged in the 
1970s. Mesh-free methods do not require a topological rela-
tionship between computational nodes and can therefore oper-
ate on scattered nodes, which greatly simplifies the discreti-
sation of the domain [6], regardless of its dimensionality or 
shape [7, 8]. Just recently, they have also been promoted to 
Computer Aided Design (CAD) geometry aware numerical 
analysis [9]. Moreover, the formulation of mesh-free methods 
is extremely convenient for implementing h-refinement [10], 
considering different approximations of partial differential 
operators in terms of the shape and size of the stencil [11, 12] 
and the local approximation order [13]. However, they tend to 
be more computationally intensive as they require larger sten-
cils for stable computations [13, 14] and have limited preproc-
essing capabilities [15]. This may make them less attractive 
from a computational point of view, but the ability to work 
with scattered nodes and easily control the approximation 
order makes them good candidates for many applications in 
science and industry [16, 17].

Adaptive solution procedures are essential in problems 
where the accuracy of the numerical solution varies spatially 
and are currently subject of intensive studies. Two concep-
tually different adaptive approaches have been proposed, 
namely p-adaptivity or h-, r-adaptivity. In p-adaptivity, the 
accuracy of the numerical solution is varied by changing 
the order of approximation, while in h- and r-adaptivity, 
the resolution of the spatial discretisation is adjusted for the 
same purpose. In the h-adaptive approach, nodes are added 
or removed from the domain as needed, while in the r-adap-
tive approach the total number of nodes remains constant 
– the nodes are only repositioned with respect to the desired 
accuracy. Ultimately, h- and p-adaptivities can be com-
bined to form the so-called hp-adaptivity [18–20], where 
the accuracy of the solution is controlled with the order of 
the method and the resolution of the spatial discretisation.

Since the regions where higher accuracy is required are often 
not known a priori, and to eliminate the need for human inter-
vention in the solution procedure, a measure of the quality of the 
numerical solution, commonly called a posterior error indicator, 
is a necessary additional step in an adaptive solution procedure 
[4]. The most famous error indicator, commonly referred to as 
the ZZ-type error indicator, was introduced in 1987 by Zienkie-
wicz and Zhu [21] in the context of FEM and it is still an active 
research topic [22]. The ZZ-type error indicator assumes that 
the error of the numerical solution is related to the difference 
between the numerical solution and a locally recovered solu-
tion. The ZZ-type error indicator has also been employed in 
the context of mesh-free solutions of elasticity problems using 
the mesh-free Finite Volume Method [23] in both weak and 
strong form using the Finite Point Method [24]. Furthermore, 
it also served as an inspiration in the context of Radial Basis 

Function-Generated Finite Difference (RBF-FD) solution to 
Laplace equation [25]. Moreover, a residual-based class of error 
indicators [26] has been demonstrated in the elasticity problems 
using a Discrete Least Squares mesh-free method [27]. Nev-
ertheless, the most intuitive error indicators are based on the 
physical interpretation of the solution, usually evaluating the first 
derivative of the field under consideration [11] or calculating 
the variance of the field values within the support domain [10].

The advent of hp-adaptive numerical analysis began with 
FEM in the 1980s [28]. In hp-FEM, for example, one has the 
option of splitting an element into a set of smaller elements 
or increasing its approximation order. This decision is often 
considered to be the main difficulty in implementing the 
hp-adaptive solution procedure and was already studied by 
Babuška [28] in 1986. Since then, various decision-making 
strategies, commonly referred to as marking strategies, have 
been proposed [2, 29]. The early works use a simple Texas 
Three Step algorithm, originally proposed in the context of 
BEM [30], where the refinement is based on the maximum 
value of the error indicator. The first true hp-strategy was 
presented by Ainsworth [31] in 1997, since then many others 
have been proposed [2, 29]. In general, p- in FEM is more 
efficient when the solution is smooth. Based on this observa-
tion, most authors nowadays use the local Sobolev regular-
ity estimate to choose between the h- and the p-refinement 
[32–34] for a given finite element. Moreover, in [35] local 
boundary values are solved, while the authors of [36, 37] 
use minimisation of the global interpolation error methods.

For mesh-free methods, h-adaptivity comes naturally with 
the ability to work with scattered nodes, and as such has been 
thoroughly studied in the context of several mesh-free meth-
ods [38–40]. Only recently, the popular Radial Basis Func-
tion-generated Finite Differences (RBF-FD) [41] have been 
used in the h-adaptive solution of elliptic problems [25, 42] 
and linear elasticity problems [10, 43]. Researchers have also 
reported the combination of h- and r-adaptivity, which form a 
so-called hr-adaptive solution procedure [44]. The p-adaptive 
method, on the other hand, is still quite unexplored in the 
mesh-free community. However, the authors of [45] approach 
the p-adaptive RBF-FD method in solving Poisson’s equa-
tion with the idea of varying the order of the augmenting 
monomials to maintain the global order of convergence over 
the domain regardless of the potential variations in the spa-
tial discretisation distance. It should also be noted that some 
authors reported p-adaptive methods by locally increasing 
the number of shape functions, changing the interpolation 
basis functions, or simply increasing the stencil size [46–48]. 
These approaches are all to some extent p-adaptive, but not 
in their true essence. The authors of [49] have introduced a 
p-refinement with spatially variable local approximation order 
and come closest to a true p-adaptive solution procedure on 
scattered nodes. However, this work lacks an automated mark-
ing and refinement strategy for the local approximation order, 
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e.g. based on an error indicator. The automated marking and 
refinement strategies were used with the weak form h-p adap-
tive clouds [50], where the authors use grid-like h-enrichment 
to improve the local field description.

In this paper, we present our attempt to implement the 
hp-adaptive strong form mesh-free solution procedure using 
the mesh-free RBF-FD approximation on scattered nodes. 
Our solution procedure follows a well-established paradigm 
based on an iterative loop. To estimate the accuracy of the 
numerical solution, we employ original IMEX error indica-
tor. The marking strategy used in this work is based on the 
Texas Three Step algorithm [34], where the basic idea is 
to estimate the smoothness or analyticity of the numerical 
solution. Our refinement strategy is based on the recommen-
dations of [10], where the authors were able to obtain satis-
factory results using a purely h-adaptive solution procedure 
for elasticity problems. Although the chosen refinement and 
marking strategies are not optimal [36], the obtained results 
clearly outperform the non-adaptive approach.

2 � hp‑adaptive solution procedure

In the present work, we focus on the implementation of 
mesh-free hp-adaptive refinement, which combines the 
advantages of h- and p-refinement procedures. The proposed 
hp-adaptive solution procedure follows the well-established 
paradigm based on an iterative loop, where each iteration 
step consists of four modules: 

1.	 Solve – A numerical solution û is obtained.
2.	 Estimate – An error indication of the obtained numeri-

cal solution.

3.	 Mark – Marking of nodes for refinement/de-refinement.
4.	 Refine – Refinement/de-refinement of the spatial discre-

tisation and local approximation order of the numerical 
method.

The workings of each module are further explained in the 
following subsections, while a full hp-adaptive solution 
procedure algorithm is given in Algorithm 1. For clarity, 
Fig. 1 also graphically sketches the ultimate goal of a single 
refinement iteration.

Algorithm 1 hp-adaptive solution procedure

Input: The problem, computational domain Ω, initial nodal density function
h : Ω → R, initial approximation order distribution m : Ω → N, the maximal
number of iterations Imax and adaptivity parameters αh,p, βh,p, λh,p, ϑh,p.
Output: The hp-refined numerical solution of the problem.
1: function adaptive solve(problem, Ω, h,m, Imax, αh,p, βh,p, λh,p, ϑh,p)
2: for i ← 0 to Imax do
3: Ω� ← discretise(Ω, h) � Discretises domain using nodal density

function h.
4: solution ← solve(problem,Ω�,m) � Obtains a numerical solution

to the problem.
5: indicator ← imex(problem, solution,Ω�,m) � Error indicator

computation.
6: if stopping criteria then
7: return solution
8: end if
9: h,m ← adapt(indicator, h,m,Ω�, αh,p, βh,p, λh,p, ϑh,p) � Refine

the nodes and approximation orders.
10: end for
11: return solution
12: end function

2.1 � The SOLVE module

First, a numerical solution û to the governing problem must 
be obtained. In general, the numerical treatment of a sys-
tem of PDEs is done in several steps. First, the domain is 

Fig. 1   A sketch of a single hp-refinement iteration for a two-dimen-
sional problem. Note that the exponentially strong source (marked 
with red cross) is set at p =

(
1

2
,
1

3

)
 . The refined state has been 

obtained by employing h- and p-refinement strategies, thus the num-
ber of nodes and the local approximation orders in the neighbourhood 
of the strong source have been modified. Closed form solution has 
been used to indicate the error in the estimate module
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discretised by positioning the nodes, then the linear differen-
tial operators in each computational node are approximated, 
and finally the system of PDEs is discretised and assembled 
into a sparse linear system. To obtain a numerical solution 
û , the sparse system is solved.

2.1.1 � Domain discretisation

While traditional mesh-based methods discretise the domain 
by building a mesh, mesh-free methods simplify this step to 
the positioning of nodes, as no information about internodal 
connectivity is required. With the mathematical formula-
tion of the mesh-free methods being dimension-independent, 
we accordingly choose a dimension-independent algorithm 
for node generation based on Poisson disc sampling [51]. 
Conveniently, the algorithm also supports spatially variable 
nodal densities required by the h-adaptive refinement meth-
ods. An example of a variable node density discretisation 
can be found in Fig. 2.

Interested readers are further referred to the original paper 
[51] for more details on the node generation algorithm, its 
stand-alone C++ implementation in the Medusa library [52], 
and follow-up research focusing on its parallel implementa-
tion [53] and parametric surface discretisations [54].

2.1.2 � Approximation of linear differential operators

Having discretised the domain, we proceed to the approxi-
mation of linear differential operators. In this step, a linear 

differential operator L is approximated over a set of neigh-
bouring nodes, commonly referred to as stencil nodes.

To derive the approximation, we assume a central point 
xc ∈ Ω and its stencil nodes 

{
xi
}n

i=1
= N  for stencil size n. 

A linear differential operator in xc is then approximated 
over its stencil with the following expression

for an arbitrary function u and yet to be determined weights 
w which are computed by enforcing the equality of approxi-
mation (1) for a chosen set of basis functions.

In this work, we use Radial Basis Functions (RBFs) 
augmented with monomials. To eliminate the dependency 
on a shape parameter, we choose Polyharmonic Splines 
(PHS) [14] defined as

for Eucledian distance r. The chosen approximation basis 
effectively results in what is commonly called the RBF-FD 
approximation method [41].

Furthermore, it is necessary that the stencil nodes 
form a so-called polynomial unisolvent set [55]. In this 
work, we follow the recommendations of Bayona [14] and 
define the stencil size as twice the number of augmenting 
monomials, i.e.

for monomial order m and domain dimensionality d. This, 
in practice, results in large enough stencil sizes to satisfy 
the requirement, so that no special treatment was needed to 
assure unisolvency. While special stencil selection strate-
gies showed promising results [11, 56], a common choice 
for selecting a set of stencil nodes N  is to simply select the 
nearest n nodes. The latter approach was also used in this 
work. Figure 2 shows example stencils for different approxi-
mation orders m on domain boundary and its interior.

It is important to note that the augmenting monomials 
allow us to directly control the order of the local approxi-
mation method. The approximation order corresponds to 
the highest augmenting monomial order m in the approx-
imation basis. However, the greater the approximation 
order the greater the computational complexity due to 
larger stencil sizes [13]. Nevertheless, the ability to con-
trol the local order of the approximation method sets the 
foundation for the p-adaptive refinement.

To conclude the solve module, the PDEs of the govern-
ing problem are discretised and assembled into a global 

(1)(Lu)(xc) ≈

n∑

i=1

wiu(xi),

(2)f (r) =

{
rk, k odd

rk log r, k even
,

(3)n = 2

(
m + d

m

)

Fig. 2   An example of domain discretisation with scattered nodes and 
variable node density. Example stencils are also shown for different 
approximation orders m on the domain boundary and its interior
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sparse system. The solution of the assembled system 
stands for the numerical solution û.

2.2 � The ESTIMATE module (Implicit‑Explicit error 
indicator)

In the estimation step, critical areas with high error of the 
numerical solution are identified. Identifying such areas is 
not a trivial task. In rare cases where a closed form solution 
to the governing problem exists, we can directly determine 
the accuracy of the numerical solution. Therefore, other 
objective metrics, commonly referred to as error indicators, 
are needed to indicate areas with high error of the numerical 
solution.

2.2.1 � IMplicit‑EXplicit (IMEX) error indicator

In this work we will use an error indicator based on the 
implicit-explicit [57] evaluation of the considered field. 
IMEX makes use of the implicitly obtained numerical solu-
tion and explicit operators (approximated by a higher order 
basis) to reconstruct the right-hand side of the governing 
problem. To explain the basic idea of IMEX, let us define 
a PDE of type

where L is a differential operator applied to the scalar field 
u and fRHS is a scalar function. To obtain an error indica-
tor field � , the problem (4) is first solved implicitly using a 
lower order approximation Lim of operators L , obtaining the 
solution uim in the process. The explicit high order operators 
L
ex are then used over the implicitly computed field uim to 

reconstruct the right-hand side of the problem (4) obtaining 
f ex
RHS

 in the process. The error indication is then calculated 
as � = |fRHS − f ex

RHS
| . The calculation steps of the IMEX error 

indicator are also shown in Algorithm 2.

Algorithm 2 IMEX error indicator

Input: The problem, domain Ω, differential operators L, low-order approxi-
mation basis ξ, high order approximation basis ζ.
Output: Error indicator field η.
1: function indicate error(problem, Ω, L, ξ, ζ)
2: Lim ← approximate(Ω, ξ) � Obtain low-order approximation of

differential operators L.
3: uim, fRHS ← solve(problem,Ω,Lim) � Obtain a numerical solution

to the problem.
4: Lex ← approximate(Ω, ζ) � Obtain high order approximation of

differential operators L.
5: fex

RHS ← evaluate(problem,Ω,Lex, uim) � Explicit re-evaluation.
6: η ← compute(fRHS , f

ex
RHS) � Obtain error indicator field.

7: return η
8: end function

The assumption that the deviation of the explicit high 
order evaluation Lexuim from the exact fRHS corresponds 

(4)Lu = fRHS,

to the error of the solution uim is similar to the reasoning 
behind the ZZ-type indicators, where the deviation of the 
recovered high order solution from the computed solution 
characterises the error. As long as the error in uim is high, 
the explicit re-evaluation will not correctly solve the Equa-
tion (4). However, as the error in uim decreases, the differ-
ence between fRHS and f ex

RHS
 will also decrease, assuming 

that the error is dominated by the inaccuracy of uim and not 
by the differential operator approximation.

It is worth noting that the definition of IMEX is general 
in the sense that computing the error indication � does 
not distinguish between the interior and boundary nodes. 
In the boundary nodes, the error indicator � is calculated 
in the same way as in the interior nodes. In the case of 
Dirichlet boundary conditions, the error indicator is triv-
ial because the solution fields are exactly imposed, i.e. 
the error indicator results in � = 0 . However, in case of 
boundary conditions involving the evaluation of deriva-
tives (Robin and Neumann), � ≠ 0.

2.3 � The MARK module

After the error indicator � has been obtained for each 
computational point in domain Ω , a marking strategy is 
applied. The main goal of this module is to mark the nodes 
with too high or too low values of the error indicator to 
achieve a uniformly distributed accuracy of the numerical 
solution and to reduce the computational cost of the solu-
tion procedure – by avoiding fine local field descriptions 
and high order approximations where this is not required. 
Moreover, the marking strategy not only decides whether 
or not (de-)refinement should take place at a particular 
computational node, but also defines the type of refinement 
procedure if there are several to choose from. In this work, 
we use a modified Texas Three Step marking strategy [30, 
58], originally restricted to refinement (no de-refinement) 
with the h- and p-refinement types. This chosen strategy 
was also considered in one of the recent papers by Eib-
ner [34], who showed that, although extremely simple to 
understand and implement, it can provide results good 
enough to demonstrate the advantages of mesh-based hp-
adaptive solution procedures.

In each iteration of the adaptive procedure, the marking 
strategy starts by checking the error indicator values �i for 
all computational nodes in the domain. Unlike the originally 
proposed marking strategy [34] that used only refinement, 
we additionally introduce de-refinement. Therefore, if �i is 
greater than ��max for the maximum indicator value �max and 
a free model parameter � ∈ (0, 1) , the node is marked for 
refinement. If �i is less than ��max for a free model parameter 
� ∈ (0, 1) ∧ � ≤ � , the node is marked for de-refinement. 
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Otherwise, the node remains unmarked, which means that 
no (de-)refinement should take place. The marking strategy 
can be summarised with a single equation

In the context of mesh-based methods, it has already been 
observed, that such marking strategy, although easy to 
implement, is far from optimal [2, 34]. Additionally, it has 
also been demonstrated that in case of smooth solutions 
p-refinement is preferred while h-refinement is preferred in 
volatile fields, e.g. in vicinity of a singularity in the solution 
[2, 36], which cannot be achieved with the chosen marking 
strategy. Additional discussion on this issue can be found 
in Sect. 4, where problems with singularity in the solution 
are discussed, and in Sect. 2.6.3 where we discuss some 
guidelines for possible work on improved marking strategies.

Since our work is focused on the implementation of hp-
adaptive solution procedure rather than discussing the opti-
mal marking strategy, we decided to secure full control over 
the marking strategy by treating h- and p-methods separately 
– but at the cost of higher number of free parameters. There-
fore, the marking strategy is modified by introducing param-
eters 

{
�h, �h

}
 and 

{
�p, �p

}
 for separate treatment of h- and 

(5)

⎧
⎪
⎨
⎪
⎩

𝜂i > 𝛼𝜂max, refine

𝛽𝜂max ≤ 𝜂i ≤ 𝛼𝜂max, do nothing

𝜂i < 𝛽𝜂max, de-refine

.

p-refinements, respectively (see Fig. 3 for clarification). 
Note that the proposed modified marking strategy can mark 
a particular node for h-, p- or hp-(de-)refinement if required, 
otherwise the computational node is left unchanged.

2.4 � The REFINE module

After obtaining the list of nodes marked for modification, the 
refinement module is initialised. In this module, the local field 
description and local approximation order are left unchanged 
for the unmarked nodes, while the remaining nodes are further 
processed to determine other refinement-type-specific details 
– such as the amount of the (de-)refinement. Our h-refinement 
strategy is inspired by the recent h-adaptive mesh-free solution 
of elasticity problem [10], where the following h-refinement 
rule was introduced

for the dimensionless parameter � ∈ [1,∞) allowing us to 
control the aggressiveness of the refinement – the larger the 
value, the greater the change in nodal density, as shown in 
Fig. 4 on the left. This refinement rule also conveniently 
refines the areas with higher error indicator values more than 

(6)hnew
i

(p) =
hold
i

�i−��max
�max−��max

(
� − 1

)
+ 1

Fig. 3   A visual representation 
of h- and p-(de)refinement 
marking strategy

Fig. 4   A visual representation 
of the (de-)refinement strategies 
for different values of refine-
ment aggressiveness � and 
de-refinement aggressiveness 
� . Notice that both refinement 
types also have lower and upper 
limits
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those closer to the upper refinement threshold �h�max . Simi-
larly, a de-refinement rule is proposed

where parameter � ∈ [1,∞) allows us to control the aggres-
siveness of de-refinement.

The same refinement (6) and de-refinement (7) rules are 
applied to control the order of local approximation (p-refine-
ment), except that this time the value is rounded to the near-
est integer, as shown in Fig. 4 on the right. Similarly, and for 
the same reasons as for the marking strategy (see Sect. 2.3), 
we consider a separate treatment of h- and p-adaptive pro-
cedures by introducing (de-)refinement aggressiveness 
parameters 

{
�h, �h

}
 and 

{
�p, �p

}
 for h- and p-refinement 

types respectively.

2.5 � Finalization step

Before the 4 modules can be iteratively repeated, the 
domain is re-discretised taking into account the newly 
computed local internodal distances hnew

i
(p) and the local 

(7)hnew
i

(p) =
hold
i

��max−�i
��max−�min

(
1

�
− 1

)
+ 1

,

approximation orders mnew
i

(p) . However, both are only 
known in the computational nodes, while global functions 
ĥnew(p) and m̂new(p) over our entire domain space Ω are 
required.

We use Sheppard’s inverse distance weighting interpo-
lation using the closest nh

s
 neighbours to construct ĥnew(p) 

and the closest nm
s

 neighbours to construct m̂new(p) . In 
general, the proposed refinement strategy can introduce 
aggressive and undesirable local jumps in node density, 
which ultimately leads to a potential violation of the quasi-
uniform internodal spacing requirement within the stencil. 
To mitigate this effect, we use relatively large nh

s
= 30 to 

smoothen such potential local jumps. The m̂new(p) is much 
less sensitive in this respect and therefore a minimum 
nm
s
= 3 is used.
Figure 5 schematically demonstrates 3 examples of 

hp-refinements. For demonstration purposes, the refine-
ment parameters for h- and p-adaptivity are the same, i.e. 
{�, �, �,�} =

{
�h, �h, �h, �h

}
=
{
�p, �p, �p, �p

}
 . Addition-

ally, the de-refinement aggressiveness � and the lower 
threshold � are kept constant, so that effectively only the 
upper limit of refinement � and the refinement aggres-
siveness � are altered. We observe that the effect of the 

Fig. 5   Demonstration of 
hp-refinement for selected 
values of refinement parameters. 
The top left figure shows the 
numerical solution before its 
refinement, while the rest show 
its refined state for different 
values of refinement parameters. 
Contour lines are used to show 
the absolute error of the numeri-
cal solution. To denote the 
p-refinement, the nodes are 
coloured according to the local 
approximation order. For clarity, 
all figures are zoomed to show 
only the neighbourhood of an 
exponentially strong source 
e
−a‖x−xs‖2

 positioned at 
x
s
=

(
1

2
,
1

3

)
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refinement parameters is somewhat intuitive. The greater 
the aggressiveness � , the better the local field description 
and the greater the number of nodes with high approxima-
tion order. A similar effect is observed when manipulating 
the upper refinement threshold � , except that the effect 
comes at a smoother manner. Note also that all refined 
states were able to increase the accuracy of the numerical 
solution from the initial state.

2.6 � Note on marking and refinement strategies

With the chosen marking and refinement strategies, a sepa-
rate treatment of h- and p-refinement types turned out to be 
a necessary complication for a better overall performance 
of the solution procedure. Nevertheless, we have tried to 
simplify the solution procedure as much as possible. In the 
process, important observations have been made – some of 
which we believe should be highlighted. This section there-
fore opens a discussion on important remarks related to the 
proposed marking and refinement modules.

2.6.1 � The error indicators

Since the h- and p-refinements are conceptually different, 
our first attempt was to employ two different error indicators 
– one for each type of refinement. We employed the previ-
ously proposed variance of field values [10] for marking the 
h-refinement and the approximation order based IMEX for 
the p-refinement. Unfortunately, no notable advantages of 
such solution procedure has been observed and was therefore 
discarded due to the increased implementation complexity. 
However, other combinations that might show more promis-
ing results should be considered in future work.

2.6.2 � Free parameters

In the proposed solution procedure, each adaptivity type 
comes with 4 free parameters that need to be defined, i.e. {
�h,p, �h,p, �h,p, �h,p

}
 . This gives a total of 8 free parameters 

that can be fine-tuned to a particular problem. While we have 
tried to avoid any kind of fine-tuning, we have nevertheless 
observed that these parameters can have a crucial impact on 
the overall performance of the hp-adaptive solution proce-
dure in terms of (i) the achieved accuracy of the numerical 
solution, (ii) the spatial variability of the error of the numeri-
cal solution, (iii) the computational complexity, and (iv) the 
stability of the solution procedure.

We observed that if the refinement aggressiveness �h is 
too high, the number of nodes can either diverge into unrea-
sonably large domain discretisations or ultimately violate 
the quasi-uniform internodal spacing requirement, making 
the solution procedure unstable. Note that here we refer to 
the stability of the solution of the discretised PDEs, which 

ultimately governs the stability of the whole solution pro-
cedure. Furthermore, a large number of nodes combined 
with high approximation orders can lead to unreasonably 
high computational complexity in a matter of few iterations. 
However, when refinement aggressiveness �h and �p is set 
too low, the number of required iterations can increase to 
such an extent that the entire solution procedure becomes 
inefficient. On top of that, the lower and upper threshold 
multipliers � and � also play a crucial role. If � is too low, 
almost the entire domain is refined. Moreover, if � is too 
large, almost no refinement takes place and if it does, it is 
extremely local, which again has no beneficial consequences 
as it often leads to a violation of the quasi-uniform nodal 
distribution requirement.

In our tests, based on extensive experimental parameter 
testing, we have selected a reasonable combination of all 
8 parameters that lead to a stable solution procedure while 
demonstrating the advantages of the proposed hp-adaptive 
approach. A thorough analysis of these parameters and their 
correlation would most likely lead to better results, as there 
is no guarantee that the selected parameters are optimal. 
However, such an analysis is beyond the scope of this paper, 
whose aim is to present an hp-adaptive solution procedure 
in the context of mesh-free methods and not to discuss the 
optimal marking and refinement strategies. Nevertheless, we 
have tried to reduce the number of free parameters using the 
same values for h- and p-adaptivity (see Fig. 5). While this 
approach also yielded satisfactory results that outperformed 
the numerical solutions obtained with uniform nodal and 
approximation order distributions in terms of accuracy, the 
full 8-parameter formulation easily yielded significantly bet-
ter results.

2.6.3 � A step beyond the artificial refinement strategies

As discussed in Sect. 2.3 and later in Sect. 4, the Texas 
Three Step based marking strategy cannot assure the opti-
mal balance of h- and p-refinements due to missing local 
data regularity estimation [2]. In FEM, local Sobolev regu-
larity estimate is commonly used to choose between the h- 
and the p-refinement [32–34]. Using an estimate for upper 
error bound [59, 60] one could generalise this approach to 
meshless methods, essentially upgrading the strategy with 
an information on the minimal internodal spacing required 
for local approximation of the partial differential operator 
of a certain order.

The refinement strategy could also be based on a spe-
cific knowledge about convergence rates and computational 
complexity in terms of internodal distance h(p) and local 
approximation orders m(p).

It has already been shown by Bayona [61] that the approx-
imation error of mesh-free interpolant F is bounded by
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Note that the constant C present in Equation (8) depends on 
the stencil and on the approximation order, both of which 
are modified by the hp-adaptive solution procedure. Nev-
ertheless, for the purpose of illustrating how a better mark-
ing strategy could be constructed, we decide to simplify the 
Equation (8) to saying that the error e is proportional to 
h(p)m(p) . Knowing the target error et , we write the ratio of 
et∕e0 as

where mt is used to denote the target approximation order 
and m0 is the current order of the approximation used to 
compute current error e0.

From Equation (9) a smarter guess for target local approx-
imation order can be obtained

Such strategy would conveniently leave the approximation 
order unchanged when et = e0 , increase it when et < e0 and 
decrease it when et > e0.

A step even further could be to additionally consider the 
change in computational complexity, similar to what the 
authors of [35] and [45] have already shown. Therefore, we 
believe that future work should consider the minimum local 
computational complexity criteria. A rough computational 
complexity can be obtained with the help of

for domain dimensionality d and target and current inter-
nodal distances ht and h0 respectively.

2.7 � Implementation note

The entire hp-adaptive solution procedure from Algo-
rithm 1 is implemented in C++. All meshless methods and 
approaches used in this work are included in our in-house 
developed Medusa library [52]. The code1 was compiled 
using g++ (GCC) 9.3.0 for Linux with -03 -DNDEBUG 
-fopenmp flags. Post-processing was done using Python 3.10 

(8)‖F(p) − u(p)‖∞ ≤ Chm+1 max
p∈Ω

�L(m+1)(u(p))�.

(9)
et

e0
∝

hmt

hm0

= hmt−m0 ,

(10)mt = m0 + ln
et

e0
.

(11)� ∝

(
mt + d

d

)3(
1

ht

)d

(
m0 + d

d

)3(
1

h0

)d
,

and Jupyter notebooks, also available in the provided git 
repository.

3 � Demonstration on exponential peak 
problem

The proposed hp-adaptive solution procedure is first dem-
onstrated on a synthetic example. We chose a 2-dimensional 
Poisson problem with exponentially strong source positioned 
at xs =

(
1

2
,
1

3

)
 . This example is categorized as a difficult 

problem and is commonly used to test the performance of 
adaptive solution procedures [2, 29, 42, 62]. The problem 
has a tractable solution u(x) = e−a‖x−xs‖

2

 , which allows us 
to evaluate the precision of the numerical solution û , e.g. in 
terms of the infinity norm

Governing equations are

for a d-dimensional domain Ω and strength a = 103 of the 
exponential source. The domain boundary is split into two 
se t s :  Neumann  Γn =

{
x, x ≤

1

2

}
 and  Di r i ch le t 

Γd =

{
x, x > 1

2

}
 boundaries. An example hp-refined numer-

ical solution is shown in Fig. 6.
In the continuation of this paper, the numerical solution 

of the final linear system is obtained by employing BiCG-
STAB solver with a ILUT preconditioner from the Eigen 
C++ library [63]. Global tolerance was set to 10−15 with a 
maximum number of 800 iterations and drop-tolerance and 
fill-factor set to 10−5 and 50 respectively. While the initial 
adaptivity solution was obtained without the guess, all other 
iterations used the previous numerical solution ûi−1 as the 
guess for new numerical solution ûi , effectively reducing 
the number of iterations required by the BiCGSTAB solver.

3.1 � Convergence analysis of unrefined solution

The problem is first solved on a two-dimensional unit disc 
without employing any refinement procedures, i.e. with 
uniform nodal and approximation order distributions. The 
shapes approximating the linear differential operators are 

(12)e∞ =
‖û − u‖∞
‖u‖∞

, ‖u‖∞ = max
i=1,…,N

�ui�.

(13)∇2u(x) = 2ae−a‖x−xs‖
2

(2a��x − xs
�� − d) in Ω,

(14)u(x) = e−a‖x−xs‖
2

on Γd,

(15)∇u(x) = −2a(x − xs)e
−a‖x−xs‖2

on Γn,

1  The source code is available at: https://​gitlab.​com/​e62Lab/​public/​
2022_p_​hp-​adapt​ivity under tag v1.2.

https://gitlab.com/e62Lab/public/2022_p_hp-adaptivity
https://gitlab.com/e62Lab/public/2022_p_hp-adaptivity
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computed using the RBF-FD with PHS order k = 3 and 
monomial augmentation m ∈ {2, 4, 6, 8}.

Figure 7 shows the results. Each plotted point is an aver-
age obtained after 50 consecutive runs with slightly different 
domain discretisations (a random seed for generating expan-
sion candidates was changed, see [51] for more details). In 
this way, we can not only study the convergence behav-
iour, but also evaluate how prone the numerical method is 
to non-optimal domain discretisations. The convergence 
of the numerical solution for selected monomial augmen-
tations is shown on the left. We observe that due to the 
strong source, the convergence rates no longer follow the 

theoretical prediction of being proportional to hm . Instead, 
the convergence rates for a small number of computational 
nodes ( N ⪅ 2000 ) are significantly lower than that obtained 
for larger domain discretisations ( N ⪆ 3000 ) for all approxi-
mation orders m > 2 . Furthermore, the accuracy gain using 
higher order approximations with small domain discreti-
sations is practically negligible. However, when the local 
field description is sufficient, both the numerical solution 
and the IMEX error indicator (Fig. 7 on the right) give reli-
able results. While we could have forced at least one node in 
the neighbourhood of the source, we do not use any special 
techniques in this work. Instead, further research is simply 
limited to sufficiently large domains so that this observation 
does not represent an issue.

Moreover, the behaviour of the IMEX error indicator is 
studied on the right side of Fig. 7. Here, the approxima-
tion order m means that the implicit numerical solution uim 
was obtained with approximation order m, while the explicit 
operators Lex from IMEX were approximated using mono-
mials up to and including order m + 2 . The observations 
show that the maximum value of the error indicator also 
converges with the number of computational nodes. Moreo-
ver, we can also observe the aforementioned change in the 
convergence rate of the numerical solution, since the maxi-
mum value of the error indicator for domain sizes N ⪅ 3000 
is approximately constant.

3.2 � Analysis of hp‑refined solution

The same problem is now solved by employing the hp-
adaptivity. Free parameters are adjusted to each refinement 
type, as can be seen in Table 1. Adaptivity iteration loop is 
stopped after a maximum of Niter iterations. For practical 
use, other stopping criteria could also be used, e.g. based on 
the maximum error indicator reduction

for the iteration index j. The shapes are computed with RBF-
FD using the PHS with order k = 3 and local monomial aug-
mentation restricted to choose between approximation orders 
m ∈ {2, 4, 6, 8} . Note that the IMEX error indicator increases 
the local approximation order by 2, effectively using mono-
mial orders mIMEX ∈ {4, 6, 8, 10} . Furthermore, to avoid 
unreasonably large number of computational nodes, the 
maximum number of allowed nodes Nmax is defined. Once 
this number is reached, further h-refinement is prevented and 

(16)
�
j
max

�0
max

≤ � ,

Fig. 6   Example hp-refined solution to exponential peak problem

Fig. 7   Convergence of unrefined numerical solution (left) and IMEX 
error indicator (right). Figure only shows a median value after 50 
runs with slightly different domain discretisations. Note that, the 
approximation order m in the right figure denotes the approximation 
order used to obtain the numerical solution, while the explicit opera-
tors employed by the IMEX error indicator are approximated with 
orders m + 2

Table 1   Adaptivity parameters 
used to obtain solution to the 
peak problem

�h �h �h �h �p �p �p �p hmax Nmax Niter

0.175 0.225 2.625 1.01 10−4 0.05 5 1.258 0.1 2.5 ⋅ 105 70
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only de-refinement is allowed, while the p-adaptive method 
retains its full functionality. To avoid insufficient local field 
description, the local nodal density is limited by an upper 
bound, i.e. h(p) ≤ hmax . The order of the PHS is left constant.

3.2.1 � A brief analysis of IMEX error indicator

Figure 8 shows example indicator fields for the initial itera-
tion, the intermediate iteration, and the iteration that 
achieved the best numerical solution accuracy – hereafter 
also referred to as the best-performing iteration or simply 
the best iteration. The third column shows the IMEX error 

indicator. We can see that the IMEX has successfully located 
the position of the strong source at xs =

(
1

2
,
1

3

)
 as the high-

est indicator values are seen in its vicinity. Furthermore, the 
second column shows that both the accuracy of the numeri-
cal solution and the uniformity of the error distribution were 
significantly improved by the hp-adaptive solution proce-
dure, further proving that IMEX can be successfully used as 
a reliable error indicator.

The behaviour of IMEX over 70 adaptivity iterations is 
also studied in Fig. 9. We are pleased to find that the con-
vergence limit of the indicator around iteration Niter = 60 
agrees well with the convergence limit of the numerical 

Fig. 8   Refinement demonstration. Initial iteration (top row), inter-
mediate iteration (middle row) and best-performing iteration (bottom 
row) accompanied with solution error (middle column) and IMEX 

error indicator values (right column). The IMEX values for Dirichlet 
boundary nodes are not shown. A red cross is used to mark the loca-
tion of the strong peak
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solution. This observation also makes the IMEX error 
indicator suitable for stopping criteria. Note that, in the 
process, the maximum error of the numerical solution has 
been reduced by about 9 orders of magnitude, while the 
maximum value of the error indicator has been reduced 
by about 7 orders of magnitude. In addition, Fig. 9 also 
shows the number of computational nodes with respect to 
the adaptivity iterations.

3.2.2 � Approximation order distribution

The iterative adaptive procedure starts by obtaining the 
numerical solution of the unrefined problem setup. In this 
step, the approximation with the lowest approximation 
order, i.e. m = 2 , is assigned to all computational nodes. 
Later, the approximation orders are changed according to 
the marking and refinement strategies. Figure 8 shows the 
approximation order distributions for 3 selected adaptivity 
iterations. We can observe that the highest approximation 
orders are all near the exponentially strong source. Moreo-
ver, due to h-adaptivity, the node density in the neighbour-
hood of the strong source is also significantly increased, i.e. 
hmax∕hmin ≈ 52 in the best-performing iteration.

After applying the p-refinement strategy in the refinement 
step, the approximation order in two neighbouring nodes 
may differ by more than one. While numerical experiments 
with FEM have shown that heterogeneity of polynomial 
order in FEM leads to undesired oscillations of the approxi-
mated solution [64], no similar behaviour was observed 
in our analyses with our setup using mesh-free methods. 
Thus, in contrast to p-FEM, where additional smoothing of 
the approximation order takes place within the refinement 

module, we have completely avoided such manipulations and 
allow the approximation order in two neighbouring nodes to 
differ by more than one.

3.2.3 � Convergence rates of hp‑adaptive solution procedure

Finally, the convergence behaviour of the proposed hp-
adaptive solution procedure is studied. In addition to the 
convergence of a single hp-adaptive run, Fig. 10 shows the 
convergences obtained without the use of refinement proce-
dures, i.e. solutions obtained with uniform internodal spac-
ing and approximation orders over the entire domain. The 
figure clearly shows that a hp-adaptive solution procedure 
was able to significantly improve the numerical solution in 
terms of accuracy and computational points required.

As previously discussed by Eibner [34] and Demkowicz 
[36], we believe that a more complex marking and refine-
ment strategies would further improve the convergence 
behaviour, but already the proposed hp-adaptive solution 
procedure significantly outperforms the unrefined solutions. 
Specifically, the refined solution is almost 4 orders of mag-
nitude more accurate than the unrefined solution (for the 
highest approximation order m = 8 used) at about 104 com-
putational nodes.

4 � Application to linear elasticity problems

In this section we address two problems from linear elastic-
ity that are conceptually different from the exponential peak 
problem discussed in Sect. 3. While the solution of exponen-
tial peak problem is infinitely smooth, these two problems 
both have a singularity in the solution.

In areas of smooth solution, the hp-strategy should favour 
p-refinement (assuming that the local discretization is suffi-
cient, as briefly discussed in Sect. 3.1), while near the singu-
larity, h-refinement should be preferred [2, 36]. However, the 
Texas Three Step based marking strategy used in this paper 

Fig. 9   In the top row convergence of IMEX error indicator (blue) 
and convergence of numerical solution (red) within 70 iterations 
is shown, while the total number of computational nodes is shown 
below

Fig. 10   Convergence of the hp-refined solution compared to the con-
vergence of the unrefined solutions
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cannot trivially achieve this, since the strategy has no knowl-
edge of the smoothness of the solution field. In addition, the 
strategy also cannot perform pure h- or pure p-refinement 
[34] (see Fig. 3), which would be ideal in the limiting situ-
ations. Instead, the strategy used enforces an increase in the 
approximation order by its design – even if the solution is not 
smooth and even if low-regularity data is being used to con-
struct the approximation. Nevertheless, in our experiments 
we observed an increase of the approximation order near the 
singularity only in the first few iterations, while the following 
iterations were focused on improving the local field descrip-
tion with h-refinement. This observation is also in agreement 
with reports from the literature [2, 34], where authors justify 
the use of the Texas Three Step marking strategy also for 
problems with singularity in the solution.

4.1 � Fretting fatigue contact

The application of the proposed hp-adaptive solution pro-
cedure is further expanded to study a linear elasticity prob-
lem. Specifically, we obtain a hp-refined solution to fretting 
fatigue contact problem [65] for which no closed form solu-
tion is known.

The problem dynamics is governed by the Cauchy-Navier 
equations

with unknown displacement vector u , external body force f  
and Lamé parameters � and � . The domain of interest is a 
thin rectangle of width W, length L and thickness D. Axial 
traction �ax is applied to the right side of the rectangle, while 
a compression force is applied to the centre of the rectangle 
to simulate contact. The contact is simulated by a compress-
ing force F generated by two oscillating cylindrical pads of 
radius R, causing a tangential force Q. The tractions intro-
duced by the two pads are predicted using an extension of 
Hertzian contact theory, which splits the contact area into 
the stick and slip zones depending on the friction coefficient 
�  a n d  t h e  c o m b i n e d  e l a s t i c i t y  m o d u l u s 
E∗−1 =

(
1−�2

1

E1

+
1−�2

2

E2

)
 , where Ei and �i are the Young’s mod-

ulus and the Poisson’s ratios of the sample and the pad, 
respectively. The problem is shown schematically in Fig. 11 
together with the boundary conditions.

Theoretical predictions from [10] are used to obtain the 
contact half-width

with normal traction

(17)(� + �)∇(∇ ⋅ u) + �∇2u = f

(18)a = 2

√
FR

t�E∗
,

and tangential traction

for c = a
√

1 −
Q

�f
 defined as the half-width of the slip zone 

and e = sgn(Q)
a�ax
4�p0

 is the eccentricity due to axial loading. 

Note that the inequalities Q ≤ �F and �ax ≤ 4
(
1 −

√
1 −

Q

�F

)
 

must hold for these expressions to be valid.
Plane strain approximation is used to reduce the prob-

lem from three to two dimensions and symmetry along 
the horizontal axis is used to further halve the problem 
size. Finally, Ω = [−L∕2, L∕2] × [−W∕2, 0] is taken as the 
domain.

We  t a k e  E1 = E2 = 72.1GPa  ,  �1 = �2 = 0.33  , 
L = 40mm , W = 10mm , t = 4mm , F = 543N , Q = 155N , 
�ax = 100MPa , R = 10mm and � = 0.3 for the model 
parameters. With this setup, the half-contact width a is equal 
to 0.2067mm , which is about 200 times smaller than the 
domain width W. For stability reasons, the 4 corner nodes 
were removed after the domain was discretised.

The linear differential operators are approximated with 
RBF-FD using the PHS with order k = 3 and local mono-
mial augmentation limited to choose between approximation 
orders m ∈ {2, 4, 6, 8} . The PHS order was left constant dur-
ing the adaptive refinement. The hp-refinement parameters 
used to obtain the numerical solution are given in Table 2.

(19)p(x) =

{
p0

√
1 −

x2

a2
, |x| < a

0, else
, p0 =

√
FE∗

t𝜋R
,

(20)

q(x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

−𝜇p0

��
1 −

x2

a2
−

c

a

�
1 −

(x−e)2

c2

�
, �x − e� < c

−𝜇p0

�
1 −

x2

a2
, c ≤ �x − e� and �x� ≤ a

0, else

Fig. 11   Fretting fatigue contact problem scheme and boundary condi-
tions
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Figure 12 shows an example of a hp-refined solution 
to fretting fatigue problem in the last adaptivity iteration 
with N = 46 626 computational nodes. We see that the 
solution procedure has successfully located the two criti-
cal points, i.e. the fixed upper left corner with a stress 
singularity and the area in the middle of the upper edge 
where contact is simulated. Note that the highest stress 
values (about 2 times higher) were calculated in the sin-
gularity in the upper left corner, but these nodes are not 
shown as our focus is shifted towards the area under the 
contact.

4.1.1 � Surface traction under the contact

For a detailed analysis, we consider the surface trac-
tion �xx , as it is often used to determine the location of 
crack initiation. The surface traction is shown in Fig. 13 
for 6 selected adaptivity iterations. The mesh-free nodes 
are coloured according to the local approximation order 
enforced by the hp-adaptive solution procedure. The mes-
sage of this figure is twofold. First, it is clear that the pro-
posed IMEX error indicator can be successfully used in 
linear elasticity problems, and second, we find that the hp-
adaptive solution procedure has successfully approximated 
the surface traction near the contact. In doing so, the local 
field description under the contact has been significantly 
improved and the local approximation orders have taken a 
non-trivial distribution.

The surface traction in Fig. 13 is additionally accompa-
nied with the FEM results on a much denser mesh with more 
than 100,000 DOFs obtained with the commercial solver 
Abaqus® [65]. To calculate the absolute difference between 
the two methods, the mesh-free solution was interpolated to 
Abaqus’s computational points using Sheppard’s inverse dis-
tance weighting interpolation with 2 nearest neighbours. We 
see that the absolute difference under the contact decreases 
with the number of adaptivity iterations and eventually set-
tles at approximately 2 % of the maximum difference from 
the initial iteration. As expected, the highest absolute dif-
ference is at the edges of the contact, i.e. around x = a and 
x = −a , while the difference is even smaller in the rest of 
the contact area. The absolute difference between the two 
methods is further studied in Fig. 14, where the mean of 
|�FEM

xx
− �mesh-free

xx
| under the contact area, i.e. −a ≤ x ≤ a , is 

shown. We observe that the mesh-free hp-refined solution 
converges towards the reference FEM solution with respect 
to the adaptivity iterations. Moreover, Fig. 14 also shows the 

number of computational nodes with respect to the adaptiv-
ity iteration.

4.2 � The three‑dimensional Boussinesq’s problem

As a final benchmark problem we solve the three-dimen-
sional Boussinesq’s problem, where a concentrated normal 
traction acts on an isotropic half-space [66].

The problem has a closed form solution given in cylindri-
cal coordinates r, � and z as

where P is the magnitude of the concentrated force, � is the 
Poisson’s ratio, � is the Lamé parameter and R is the Eucle-
dian distance to the origin. The solution has a singularity at 
the origin, which makes the problem ideal for treatment with 
adaptive procedures. Furthermore, the closed form solution 
also allows us to evaluate the accuracy of the numerical 
solution.

In our setup, we consider only a small part of 
the problem, i.e. � = 0.1 away from the singularity, 
as schematically shown in Fig.  15. From a numeri-
cal point of view, we solve the Navier–Cauchy Equa-
tion (17) with Dirichlet boundary conditions described 
in  (21), where the domain Ω is defined as a box, i.e. 
Ω = [−1,−�] × [−1,−�] × [−1,−�].

Although the closed form solution is given in cylindri-
cal coordinate systems, the problem is implemented using 
cartesian coordinates. We employ the proposed mesh-
free hp-adaptive solution procedure where the shapes are 
computed with RBF-FD using the PHS with order k = 3 
and monomial augmentation restricted to choose between 
approximation orders m ∈ {2, 4, 6, 8} . Other hp-refinement 
related parameters are given in Table 3. For the physical 
parameters of the problem, the values P = −1 , E = 1 and 
� = 0.33 were assumed.

(21)

ur =
Pr

4��

(
z
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−

1 − 2�

R(z + R)

)
, u� = 0,
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P

4��

(
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R
+

z2
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)
,

�rr =
P

2�

(
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−

3r2z

R5

)
,

��� =
P(1 − 2�)

2�

(
z

R3
−

1

R(z + R)

)
,

�zz = −
3Pz3

2�R5
, �rz = −

3Prz2

2�R5
,

�r� = 0, ��z = 0,

Table 2   Adaptivity parameters 
used to obtain solution to 
fretting fatigue contact problem

�h �h �h �h �p �p �p �p hmax Nmax Niter

5 ⋅ 10−5 10−4 5 1.05 10−3 0.1 4 1.05 2.5 ⋅ 10−4 5 ⋅ 105 19
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It is worth mentioning, that the final sparse system 
was solved using BiCGSTAB with ILUT preconditioner 
(employed with an initial guess obtained from the previous 

adaptivity iteration), where the global tolerance was set to 
10−15 with a maximum number of 500 iterations and drop-
tolerance and fill-factor set to 10−6 and 60 respectively. 
Other possible choices and their effect on the solution pro-
cedure are further discussed in Sect. 4.2.2.

Example hp-refined numerical solution is given in 
Fig. 16. We can see that the proposed hp-adaptive solution 
procedure is sufficiently robust to obtain a good solution 
even for three-dimensional problems with singularities. 
Additionally, we also observe that the IMEX error indica-
tor successfully identified the singularity, effectively seen 
as an increase in the local field description in the neigh-
bourhood of the concentrated force applied at the origin.

Fig. 12   Example hp-refined fretting fatigue contact solution

Fig. 13   Surface traction 
under the contact for selected 
iteration steps demonstrat-
ing the hp-adaptivity process. 
Colours are used to denote the 
local approximation orders. 
Numerical solution is addi-
tionally compared against the 
Abaqus FEM solution, where 
the red line is used to denote the 
absolute difference between the 
two methods. For clarity, the 
two dashed green lines show the 
edge contact
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4.2.1 � The von Mises stress along the body diagonal

Figure 17 shows further evaluation of the hp-refined mesh-
free numerical solution. Here, the von Mises stress at points 
near the body diagonal (−1,−1,−1) → (−�,−�,−�) is cal-
culated for selected 4 adaptivity iterations and compared to 
the analytical values in terms of relative error. In addition, 
the nodes are coloured according to the local approxima-
tion order enforced by the hp-adaptive solution procedure. 
We can see that the highest relative error of approximately 
0.3 at the initial state is observed in the neighbourhood of 
the origin. In the final iteration, the relative error is reduced 
by about an order of magnitude. We also see that the hp-
adaptive solution procedure has found a non-trivial order 
distribution and that the number of nodes in the neighbour-
hood of the corner (−�,−�,−�) has increased significantly.

A more quantitative analysis of the mesh-free solution 
is given in Fig. 18 where the �1 , �2 and �∞ error norms 
and number of computational nodes vs. adaptivity iteration 
are shown. Compared to the initial state, the hp-adaptive 
solution procedure was able to achieve a numerical solution 
that was almost two orders of magnitude more accurate. In 
the process, the number of computational nodes increased 
from 10 500 in the initial state to about 80 000 in the final 
iteration. However, it is interesting to observe that with 

the configuration from Table 3, none of the computational 
nodes used the approximation with the highest order allowed 
( m = 8 ). Instead, in the final iteration, there were 130 nodes 
approximated with m = 6 , and 5937 with m = 4 , while the 
rest were approximated with the second order. Note that, as 
expected, most of the higher order approximations are near 
the concentrated force—which is difficult to represent visu-
ally, so we only give the descriptive data.

For reference, we take the h-refined solution by Slak et al. 
[10], who were able to reduce the infinity norm error by 
about an order of magnitude with N ≈ 140 000 nodes in the 
final iteration. It is perhaps naive to compare this result with 
ours, since the authors use different marking and refinement 
strategies and, more importantly, a different error indica-
tor. Nevertheless, the infinity norm error of our hp-refined 
solution is in the neighbourhood of 10−3 compared to theirs 
at approximately 10−2 with almost twice as many com-
putational nodes. We believe our results could be further 
improved by fine-tuning the free parameters, but we decided 
to avoid such an approach.

4.2.2 � Additional discussion on solving the global sparse 
system

In all previous sections, we have completely neglected the 
importance of solving the global sparse system in the pro-
posed hp-adaptive solution procedure with a suitable solver. 
However, inappropriate choice of solver can lead to inac-
curate or even unstable behaviour and, most importantly, 
unreasonably large computational cost. To avoid such flaws, 
we compared an iterative BiCGSTAB and BiCGSTAB with 
ILUT preconditioner with two direct solvers—namely the 
SparseLU and the PardisoLU—on a hp-adaptive solution to 
the Boussinesq problem, performing 25 adaptivity iterations 
with approximately 10,000 initial nodes and 135,000 nodes 
after the last iteration. Note that the iterative BiCGSTAB 
solver with ILUT preconditioner was employed with an ini-
tial guess obtained from the previous adaptivity iteration.

In addition to the discussed solvers, we also tried the 
SparseQR. While its stability and accuracy were compara-
ble to other solvers, its computational cost was significantly 
higher and was therefore removed from further analysis and 
from the list of potential candidates. For all performed tests 
we used the EIGEN linear algebra library [63].

Let us first examine the sparsity patterns of the systems 
assembled at different stages of the hp-adaptive process in 
Fig. 19, where we can see how the system increases in size 
and also becomes less sparse due to globally decreasing the 
internodal distance h and increasing the approximation order 
p. Additionally, the spectra of the matrices are shown in 
the bottom row of Fig. 19, where we can see that the ratios 
between the real and imaginary parts of the eigenvalues are 
in good agreement with previous studies [13, 14, 61].

Fig. 14   Mean surface traction difference between the two methods 
under the contact area

Fig. 15   Schematic presentation of Boussinesq’s problem
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Moreover, Fig. 20 presents three different views of the 
solvers’ performance: (i) the achieved accuracy of the final 
solution for different solvers, (ii) the number of iterations 
a solver needs to converge, and (iii) the execution times of 
each solver, each with respect to the hp-adaptive iterations. 
The differences in final accuracy for different solvers are 
marginal. Perhaps the BiCGSTAB shows better stability 
behaviour (in terms of error scatter) compared to others. 
Nevertheless, it is important to observe, that the SparseLU 
only works until the 15th iteration with approximately 
50 000 nodes, at which point our computer ran out of the 
available 12 Gb memory, which is to be expected due to the 
computational complexity or SparseLU. PardisoLU, on the 
other hand, remains stable through all adaptivity iterations.

Generally speaking, the number of iterations BiCG-
STAB needs to converge increases with hp-adaptivity itera-
tions due to the increasing non-zero elements in the global 
system. The BiCGSTAB with a ILUT precoditioner shows 
similar behaviour, but with approximately 2/3 less iterations 
required. Both direct solvers, of course, require only one 
“iteration”. Finally, the analysis of the execution time shows 
that the PardisoLU solver is by far the most efficient among 
all considered candidates.

With all things considered, PardisoLU seems to be the 
the best candidate for hp-adaptive solution procedure. How-
ever, the last adaptivity iteration with approximately 115,000 
nodes was coincidentally right at the limit of the available 
12 Gb RAM memory—using approximately 10.5 Gb. It is 
therefore expected that like SparseLU, the PardisoLU would 
soon run out of memory for larger domains. To avoid such 
problems, we chose to work with a general purpose iterative 
BiCGSTAB solver with ILUT preconditioner employed with 
an initial guess, since it shows slightly better computational 
efficiency than the pure BiCGSTAB and required only 7.5 
Gb of RAM for approximately 135,000 nodes in the final 
adaptivity iteration.

Table 3   Adaptivity parameters 
used to obtain solution to 
Boussinesq’s problem

�h �h �h �h �p �p �p �p hmax Nmax Niter

10−3 10−3 3.75 1.01 10−4 10−2 3 1.5 0.04 7 ⋅ 104 20

Fig. 16   Example hp-refined 
numerical solution to Boussin-
esq’s problem

Fig. 17   Numerical solution compared to analytical solution at the 
nodes near the body diagonal (−1,−1,−1) → (−�,−�,−�) for 
selected iterations

Fig. 18   Convergence of numerical solution along with number of 
computational nodes
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5 � Conclusions

In this paper we establish a baseline for hp strong form 
mesh-free analysis. We have formulated and implemented a 
hp-adaptive solution procedure and demonstrated its perfor-
mance in three different numerical experiments.

The cornerstone of the presented hp-adaptive method is 
an iterative solve–estimate–mark–refine paradigm with the 
modified Texas Three Step marking strategy. The h-refine of 
the proposed method relies on an advancing front node posi-
tioning algorithm based on Poisson disc sampling, which 
enables dimension-independent node generation support-
ing spatially variable density distributions. For the adaptive 
order of the method, we exploit an elegant control over the 
order of the approximation via the augmenting monomials 
in the approximation basis.

We proposed an IMEX error indicator, where the implicit 
solution of the problem is processed with the higher order 

local explicit representation of PDE at hand, e.g. if the 
implicit solution is computed with a second order approxi-
mation, the explicit re-evaluation happens at fourth order. 
Our analyses show that the proposed error indicator suc-
cessfully captures main characteristics of error distributions, 
which suffices for the proposed iterative adaptivity.

The proposed hp-adaptive solution procedure is first 
demonstrated on a two-dimensional Poisson problem with 
exponential source and mixed boundary conditions. Further 
demonstration focuses on linear elasticity problems. First, 
a 2D fretting fatigue problem – a contact problem with 
pronounced peaks in the surface stress, and second, a 3D 
Boussinesq’s problem with stress singularity. In both cases, 
we have demonstrated the advantages of using the proposed 
hp-adaptive approach.

Although the hp-adaptivity introduces additional steps in 
the solution procedure and is therefore undoubtedly compu-
tationally more expensive per node than the non-adaptive 

Fig. 19   Global sparse matrix 
plot (top row) and spectra of 
the matrices (bottom row) at 
three selected iterations of the 
hp-adaptive solution proce-
dure. Note that the spectra are 
computed for the BiCGSTAB 
solver with an ILUT precondi-
tioning using an estimate from 
the previous iteration

Fig. 20   Error of the final solu-
tion with respect to the adaptiv-
ity iteration for different solvers 
(left), number of solver iteration 
per adaptivity iteration (centre) 
and solver compute time for 
each adaptivity iteration (right)
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approach, it is essential in problems that exhibit volatilities 
in solution in small regions of the domain. For example sin-
gularity in the contact problem require excessively detailed 
numerical analysis near the contact compared to the rest 
(the bulk) of the domain. Such cases are extremely difficult 
(or even impossible) to solve without adaptivity, since the 
minimal uniform h and p distribution required to capture 
these volatilities would lead to unreasonably high computa-
tional complexity. In cases of a smooth solution, however, 
the benefits of hp-adaptivity in most cases do not justify its 
computational overheads.

We are aware that there are many opportunities for 
improvement of presented methodology. The IMEX error 
indicator needs further clarification. Other error indicators 
should also be implemented and tested. During our experi-
ments, we have found that a marking strategy with more free 
parameters leads to better accuracy, but is also more diffi-
cult to understand and control and can be case dependent. A 
smarter and more effective refinement and marking strate-
gies are certainly part of future work. These should possibly 
take into account more information about the method itself, 
e.g. the dependence of the computational complexity on the 
approximation order, and most importantly local data regu-
larity to choose between p and h refinement.

One of our goals in future work is also generalisation 
of the presented hp-adaptive solution procedure to time-
dependent problems. The most straightforward approach 
to achieve that is to granularly adapt h and p throughout 
the simulation. In its simplest form, the proposed hp-adap-
tivity would be performed at each time step, starting with 
the hp distributions of the previous time step and using 
the same adaptivity parameters for all time steps. A more 
sophisticated approach would also take into account the 
desired accuracy during the simulation, resulting in time-
dependent adaptivity parameters. For example, if one is only 
interested in a steady state solution, the desired accuracy 
would increase with time, reaching its maximum at steady 
state. Additionally, to perform proper adaptive analysis, the 
time step should also be adaptive, which requires an addi-
tional step in the hp-adaptive solution procedure.
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