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Abstract

Meshless methods are becoming increasingly popular in computational mechanics and en-
gineering. Their main feature is the ability to manage complex geometries while avoiding
the often tedious process of mesh generation required by the traditional methods. Various
meshless approximations of linear differential operators appearing in the governing problem
have been proposed over the years. However, even with the state-of-the-art methods and
immense computational power at our disposal, efficient solution procedures for solving sys-
tems of partial differential equations (PDEs) are being actively studied, as the complexity
of the problems under consideration continues to increase.

In this thesis, we study different approaches towards efficient PDE-solving solution
procedures employing meshless approximation methods. Our study is limited to three
commonly used approximation methods: the Radial Basis Function-generated Finite Dif-
ferences (RBF-FD), the Diffuse Approximation Method (DAM), referred to as Weighted
Least Squares (WLS) in this thesis, and the simplest collocation method, referred to as
MON throughout this thesis.

The first part of the thesis is devoted to a discussion of the fundamentals of meshless
approximation. The effects of monomial augmentation on the accuracy of the numerical
solution, as well as on the stability and the computational complexity of the solution
procedure are investigated. Our understanding of the meshless approximation is then
enhanced with a study of the stencil size impact on the accuracy of the numerical solution.
We then compare the performance of the RBF-FD and the WLS approximation methods in
terms of the accuracy of the obtained solution and the stability of the solution procedure.

After demonstrating the stability of the high-order RBF-FD approximations, we fo-
cus on the development and implementation of the hp-adaptive solution procedure in
the second part of the dissertation. We first employ p-refinement to demonstrate the ef-
fects of spatially-variable approximation order on the efficiency of the solution procedure.
We then develop an original error indicator, which subsequently enables the implementa-
tion of a fully adaptive strong-form meshless method employing both h- and p-refinement
procedures. This method simultaneously adjusts the spatial discretization resolution (h-
adaptivity) and the approximation order (p-adaptivity) to allocate the available computa-
tional resources in the domain regions where they are most needed.

The last part of the thesis deals with yet another attempt to improve the efficiency of
PDE-solving solution procedures, namely by spatially varying the approximation method.
Specifically, the advantages of local approximation and properties of different approxima-
tion methods are exploited to propose a hybrid WLS–RBF-FD approximation method.
A step further is done by introducing spatially variable node regularity in conjunction
with spatially variable approximation method, employing RBF-FD on scattered nodes and
MON on uniform nodes. The performance of both spatially-varying approximation meth-
ods is demonstrated on a set of fluid-flow and linear elasticity problems to illustrate the
computational efficiency gains offered by such solution procedures.
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Povzetek

Vse pogosteje se na področju inženirstva in numeričnih simulacij uporabljajo brezmrežne
metode. Njihova glavna prednost je, da v nasprotju s tradicionalnimi numeričnimi meto-
dami zapleteno grajenje mreže za diskretizacijo računske domene ni potrebno. Do danes so
znanstveniki razvili več metod za brezmrežno aproksimacijo linearnih diferencialnih ope-
ratorjev, ki se pojavijo v matematičnem opisu problemov. Kljub modernim in učinkovitim
metodam ter visoki zmogljivosti današnjih računalnikov pa je razvoj učinkovitih metod za
reševanje sistemov parcialnih diferencialnih enačb (PDE) še vedno aktivno področje razi-
skav – predvsem zaradi naraščajoče kompleksnosti obravnavanih problemov, ki zahtevajo
vse več računske moči.

V disertaciji se osredotočimo na različne pristope k učinkovitejšim postopkom reševanja
PDE z brezmrežnimi metodami. Pri tem se omejimo na tri pogosto uporabljene aproksi-
macijske metode: končne diference, generirane z radialnimi baznimi funkcijami (RBF-FD),
metodo difuzivne aproksimacije (DAM), ki jo v tem delu poenostavljeno imenujemo kar
metoda uteženih najmanjših kvadratov (WLS), in najpreprostejšo metodo kolokacije MON.

Prvi del disertacije je posvečen diskusiji osnovnih značilnosti aproksimacij z brezmre-
žnimi metodami. Najprej preučimo vpliv razširitve baznih funkcij aproksimacije z monom-
skimi členi na natančnost numerične rešitve ter na stabilnost in računsko kompleksnost
rešitvenega postopka. Razumevanje brezmrežnih aproksimacij nato poglobimo s študijo
vpliva velikosti podpornih domen na natančnost numerične rešitve. Nazadnje¸ primerjamo
še RBF-FD in WLS metodi ter ju ovrednotimo z vidika natančnosti numerične rešitve in
stabilnosti rešitvenega postopka.

Po demonstraciji stabilnosti RBF-FD aproksimacij višjega reda, se v drugem delu diser-
tacije poglobimo v razvoj in implementacijo hp-prilagodljivega postopka reševanja sistemov
PDE. Diskusijo pričnemo z implementacijo p-prilagodljivosti in pokažemo vpliv prostorsko
spremenljivega reda aproksimacije na učinkovitost rešitvenega postopka. V nadaljevanju
razvijemo izvirni indikator napake numerične rešitve, ki nam omogoči razvoj popolnoma
prilagodljive brezmrežne metode z uporabo h- in p-prilagodljivosti. Tako razvit hp-rešitveni
postopek na podlagi vrednosti indikatorja napake iterativno hkrati prilagaja prostorsko lo-
čljivost diskretizacije (h-prilagodljivost) in red aproksimacije (p-prilagodljivost) ter s tem
prerazporedi razpoložljive računske vire v dele domene, kjer so le-ti najbolj potrebni.

V zadnjem delu disertacije obravnavamo možnost izboljšanja učinkovitosti postopkov
reševanja PDE preko prostorsko spremenljive metode aproksimacije. Natančneje, upo-
rabimo osnovne lastnosti lokalne aproksimacije in značilnosti različnih aproksimacijskih
metod ter razvijemo hibridno WLS–RBF-FD aproksimacijo diferencialnih operatorjev. V
naslednjem koraku uvedemo prostorsko spremenljivo regularnost računskih točk, ki jo spre-
mlja prostorsko spremenljiva metoda aproksimacije. Pri tem uporabimo stabilno RBF-FD
metodo na razpršenih točkah in računsko učinkovito metodo MON na uniformnih točkah.
Vpliv obeh prostorsko spremenljivih aproksimacijskih metod na učinkovitost rešitvenega
postopka je demonstriran na več problemih s področja elastomehanike in dinamike tekočin.
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Chapter 1

Introduction

Human progress has always been driven by the desire to understand natural phenomena.
With the increasing computational power at our disposal, a commonly used approach to
expand our understanding of nature is computational modelling, where various phenomena
are described with mathematical models that are then numerically solved by computers.

A common approach to describe dynamic processes that evolve in space and time are
Partial Differential Equations (PDEs). In their essence, PDEs bridge the gap between
theoretical concepts and real-world observations of various problems, e.g. heat transfer,
fluid flow, wave propagation, quantum mechanics, etc. They serve as the basis for both
analytical studies and computer simulations and thus play an important role in various
scientific disciplines and technology.

1.1 Numerical Treatment of PDEs

Due to the complexity of realistic models, analytic solutions to systems of PDEs are rare [1].
In some cases, analytic solution can be obtained by using advanced mathematical proce-
dures and/or a series of simplifications, which makes the obtained solutions applicable only
in certain scenarios. As an alternative, numerical treatment of PDEs has been proposed [2].
In the process of numerical treatment, the considered system of PDEs is transformed into
a system of algebraic equations [2], [3]. The solution to the algebraic system then provides
us with an approximate, i.e. numerical, solution to the governing PDE system.

To date, various methods for numerical treatment of PDEs have been proposed. Rang-
ing from the weak form Finite Element Method (FEM) [4] to relatively simple strong form
Finite Difference Method (FDM) [3]. The FDM is often presented as the most intuitive,
easy to implement, and computationally effective method, but at a cost of limited usabil-
ity on irregularly shaped domains. Modern numerical analysis is dominated by FEM [5],
as it offers a mature and versatile solution approach that includes all types of adaptive
solution procedures [6] and well understood error indicators [7]. The matured FEM, has
been accepted as the standard numerical method for solving PDEs in weak form by the
community. Despite its widespread acceptance, the meshing of realistic three-dimensional
domains1 is still a problem that often requires user assistance or development of domain-
specific meshing algorithms [8]. It is widely accepted that mesh generation is one of the
most cumbersome stages of the FEM analysis. In response to the tedious meshing of re-
alistic domains, required by FEM, and the geometric limitations of FDM, a new class of
meshless or mesh-free methods [9] emerged in the 1970s.

1Meshing the computational domain is a crucial part of FEM analysis where nodes are structured into
polyhedrons covering the entire domain of interest.
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The main feature of the meshless methods is that a topological relationship between
computational nodes is not required and they can, thus, operate on scattered nodes. This
greatly simplifies the discretization of the domain [10], regardless of its dimensionality or
shape [11], [12]. Although positioning of nodes is considered to be a much simpler task
than meshing, it is still not trivial. In the early years, many authors used available mesh
generators to generate the discretization nodes and discarded the internodal connectivity
after the mesh had been generated [13]. Such procedure is conceptually flawed, since
the idea of meshless methods is to avoid meshing. It also generates nodal distributions of
insufficient quality [14]. Consequently, several algorithms dedicated to positioning of nodes
for meshless approximation emerged, ranging from sphere packing-based algorithms [15],
to front advancing [16] and iterative methods [17]. In 2018, a purely meshless algorithm
based on Poisson disk sampling [18] was introduced. In the same year, the first dimension-
independent node generation algorithm that supports distributions with spatially variable
density [19] was also proposed. Today, a parallelized version of the same node positioning
algorithm is available [20]. Just recently, meshless methods have also been promoted to
Computer Aided Design (CAD) geometry-aware numerical analysis [21].

Researchers have also reported that large deformations are handled more robustly [22]
and argued that the implementation of adaptive procedures [23] and stabilisations [24], [25]
is simpler when meshless methods are used. That is largely due to the elegant formulation
of meshless methods resulting in straightforward implementation of different refinement
procedures [26], [27], considering different approximations of differential operators in terms
of the shape and size of the stencil [28], [29] and the local approximation order [30]–
[32]. The less attractive property of meshless methods is its computational cost, which
is generally higher than that of mesh-based methods due to their generality2 and larger
stencil requirements for stable approximations [30]–[32].

1.2 Historical Overview of Meshless Methods

The local meshless methods can be understood as a generalisation of FDM to scattered
nodes. One of the first attempts to generalise FDM dates back to 1972 when Jense con-
sidered Taylor series expansions interpolated to stencils with six nodes [34]. This idea was
later developed into a Generalised Finite Differences Method (GFDM) using Weighted
Least Squares (WLS) approximation [35].

Many consider the Smoothed Particle Hydrodynamics (SPH), developed by Lucy [36]
and Gingold and Monaghan [37] in 1977, to be the start of meshless methods. SPH was
originally used to solve astrophysical problems. Later, applications to fluid dynamics [38]–
[40] and solid mechanics [41] were also reported. SPH is based on the idea of representing
the domain of interest as a set of particles. This approach has the advantage of being very
flexible, as the particles can be easily positioned or moved to represent or follow complex
geometrical shapes.

The first meshless methods for boundary value problems were developed in the early
1990s as generalizations of the FEM to a meshless setting. The first such method was
the Diffuse Element Method (DEM) [42], proposed by Nayroles et al. in 1992. In 1994,
Belytschko et al. [43] extended DEM to the Element Free Galerkin (EFG) method. EFG
is similar to FEM in that the problem is solved in its weak form using test and trial
functions. However, EFG uses Moving Least Squares (MLS)-based shape functions and

2Generation of shape functions in weak form, or stencil weights computation in the strong form context,
is transferred from pre-process to the solution procedure [23], [33].
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requires a background grid for integration3.
In addition to DEM and EFG, a number of other meshless methods were developed

in the early 1990s. In 1995, Oñate et al. introduced one of the most notable strong-
form collocation methods, the Finite Point method (FPM) [45]. In general, collocation
methods can be viewed as a special case of weighted residual methods, where the test
functions are chosen to be the Dirac delta distributions [46]. FPM approximates a partial
differential operator using either least squares, weighted least squares, or moving least
squares methods. The method has been well-researched and has been used with a wide
variety of problems [47]. Around the same time, a similar method appeared in conjunction
with the flow of porous media, called the Diffuse Approximate Method (DAM) [48]. Other
methods include methods based on reproducing kernels [49] and Partition of Unity Methods
(PUM) [50], [51]. A more thorough overview of these methods is given by Belytschko in
his review paper [23] from 1996.

A few years after the EFG, Atluri and Zhu [52], [53] proposed the Meshless Local Petrov
Galerkin (MLPG) method. MLPG solves the problem locally in its weak form by enforc-
ing the governing equation for selected subdomains of the whole computational domain.
Concurrently, the Boundary Element Method (BEM) was generalized to a meshless set-
ting, resulting in application of global weak forms known as the Boundary Node Method
(BNM) [54] and local weak forms referred to as the Local Boundary Integral Method
(LBIM) [55]. Around that period, the Moving Point Method [56], [57] was also proposed.

In the 1990s, Kansa proposed a global method using Radial Basis Functions (RBFs)
to solve PDEs in the strong-form collocation formula [58]. His proposal was theoretically
justified in 1998 [59] and showed high-order convergence and spectral accuracy but has
high computational complexity and possible ill-conditioning in solving the global system
due to its global formulation. The shortcomings of the global approach encouraged the
development of local variant of the method, resulting in methods such as Local RBF
Collocation Method (LRBFCM) [60], Radial Point Collocation Method (RPCM) [61] and
Radial Basis Function-generated Finite Differences (RBF-FD) [62], where the methods
mainly differ in the selection of basis functions and augmenting monomials.

Among all local collocation methods, RBF-FD is likely the most popular meshless
method at the moment. RBF-FD uses RBFs, e.g. Polyharmonic Splines (PHS), augmented
with monomials [30], [31] to avoid stagnation errors and allow control over the convergence
rate, respectively. Recently, RBF-FD has been used in the h-adaptive solution of elliptic
problems [63] and linear elasticity situations [26], where the authors also presented spe-
cial balanced stencils, effectively reducing the computational cost. In their latest paper,
Davydov et al. continued the development of advanced stencil selection [64] for RBF-FD
in three-dimensional domains. Furthermore, the ease of order regularisation in RBF-FD
naturally led to several publications discussing high-order solutions [32], [65], [66].

The historical overview on the development of meshless methods is by no means com-
plete. Further details can be found in textbooks by Fasshauser [67] or more recent reviews
by Chen and Belytschko [68] and Patel [69].

It is perhaps also worth mentioning that the development of meshless methods is still
active today. In recent years, a theoretical study on the error analysis of the FPM has
been presented [70], the solution of PDEs defined on evolving manifolds with Lagrangian
GFDM [71], high-order GFDM with a strategy for avoiding ill-conditioned stencils [72],
high-order WLS Radial Basis Functions (RBF) approach with improved stability in the

3The use of a background grid in DEM and EFG led some authors to classify these methods as not
truly meshless. However, the precise definition of a truly meshless approximation method is not unique.
Some researchers argue that any method using a background grid or cells of any kind is no longer truly
meshless. Others argue that the use of a background grid is acceptable, as long as it is not used to enforce
boundary conditions [44].
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presence of Neumann boundaries [73], to name but a few.

1.3 Adaptive Solution Procedures

Despite the immense computing power and a number of different numerical methods at our
disposal, the development of efficient numerical approaches is still crucial to solve ever more
complex problems. Relying solely on brute force computing often leads to unnecessarily
long execution times – not to mention the wasted energy.

In problems where the spatial variation in solution’s accuracy is significant, adaptive
solution procedures play a crucial role and have recently become the focus of extensive
research. Note that the regions requiring higher accuracy are often not known a priori.
Thus, the use of a posteriori error indicators is essential in adaptive solution procedures [8].
One of the most well-known error indicators, often referred to as the ZZ-type error indi-
cator, was introduced by Zienkiewicz and Zhu [74] in 1987 in the context of FEM, and it
continues to be an active area of research [75]. The ZZ-type error indicator relates the error
of the numerical solution to the difference between the numerical solution and a locally
recovered solution. This indicator has been applied in the context of meshless solutions for
elasticity problems using the meshless Finite Volume Method (FVM) [76], both in weak
and strong forms using the FPM [77], and also served as inspiration in the context of
RBF-FD solutions to Laplace equation [63]. Additionally, a class of error indicators based
on residuals has been demonstrated on elasticity problems using a Discrete Least Squares
Meshless Method [78]. Nevertheless, the simplest and most intuitive indicators are based
on the physical interpretation of the solution, usually evaluating the first derivative of
the field under consideration [28] or calculating the variance of the field values within the
stencil [26].

After the domain regions in need of higher accuracy are identified, conceptually different
techniques to locally improve the solution’s accuracy have been proposed: p-adaptivity and
h-,r -adaptivities. In p-adaptivity, the local accuracy of the numerical solution is adjusted
by controlling the order of approximation. On the other hand, in h- and r -adaptivities,
the spatial discretization resolution is modified to achieve the same objective. Specifically,
in the h-adaptive approach, nodes are added or removed from the domain as needed,
while in the r -adaptive approach, the total number of nodes remains constant, but their
positions are optimized to improve the local accuracy of the numerical solution. The h-
and p-adaptive strategies can be combined to form the so-called hp-adaptivity [79]–[81].
This approach enables control over the solution’s accuracy by simultaneously adjusting the
order of the approximation method and the spatial discretization resolution.

The concept of hp-adaptive numerical analysis originated with FEM in the 1980s [82].
In hp-FEM, one can choose to either split a given finite element into smaller elements
or increase its approximation order (or both). This choice is often considered as the
primary challenge in implementing hp-adaptive solution procedures and has been studied
by Babuška [82] as early as 1986. Since then, various decision-making strategies, also
known as marking strategies, have been proposed [6], [83]. The early works employed
a simple Texas Three Step algorithm, initially proposed for Boundary Element Method
(BEM) [84], where refinement is based on the maximum value of the error indicator. The
first true hp-strategy was presented by Ainsworth [85] in 1997. Since then, many other
strategies have been proposed – with condensed descriptions and performance analyses
provided by Mitchell in [6] and [83]. Generally, p-refinement in FEM is more efficient
when the solution is smooth. Based on this observation, most authors nowadays use the
local Sobolev regularity estimate to choose between h- and p-refinements [86]–[88] for a
given finite element. As an alternative, in [89], local boundary values are solved, while the
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authors of [90], [91] employ global interpolation error minimization methods.
For meshless methods, h-adaptivity comes naturally due to their ability to work with

scattered nodes, and as such, it has been extensively studied in the context of several
meshless methods. The h-adaptive LRBFCM has been tackled in solution of 2D Burgers’
equation in [92], Benito et al. demonstrated the h-adaptive GFDM [93] in solving Laplace
equation, in [94], Liu et al. discussed the h-adaptive RPCM solution of a cantilever beam
where they used a Voronoi diagram to assign the positions of new computational nodes.
Recently, an h-adaptive RBF-FD solution of the elasticity problem has been demonstrated
in [26], [95], an h-adaptive generalised moving least squares solution in fluid-structure
interactions in [96] and h-adaptive solutions to elliptic problems [63], [97]. Moreover, h-
adaptivity has been used with the RBF-PUM collocation refinement schemes [98]. Some
researchers have also reported on combining the h- and r -adaptivity, forming a so-called
hr -adaptive solution procedure [99].

On the other hand, the p-adaptive method remains relatively unexplored in the mesh-
less community. The authors of [100] approach the p-adaptive RBF-FD method in solving
Poisson’s equation by varying the order of the augmenting monomials to maintain the
global order of convergence over the domain, regardless of potential variations in spatial
discretization distances. It should also be noted that some authors reported p-adaptive
methods by locally increasing the number of shape functions, changing the interpolation
basis functions, or simply increasing the stencil size [72], [101], [102]. While these ap-
proaches are to some extent p-adaptive, they may not fully capture its true essence. The
closest attempt at a true hp-adaptive solution procedure has been presented by Duarte
et al. with the h-p adaptive clouds [103], where the authors use grid-like h-enrichment to
improve the local field description.

Yet another approach for efficient PDE solving is based on spatially-variable approx-
imation method. Similar approaches have already been introduced, such as the hybrid
FEM-meshless method [104], [105] addressing issues with unstable Neumann boundary
conditions in a meshless approximation. Additionally, hybrid methods that combine FDM
on a conventional cartesian grid with meshless approximation on scattered nodes have
been proposed [106], [107]. While these hybrid approaches are computationally efficient,
they often require additional implementation-related efforts at the transition from carte-
sian to scattered nodes (or similarly at the transition from one approximation method to
the other) [108].

1.4 Purpose of the Dissertation

The goal of this dissertation is to study, implement and discuss some approaches towards
efficient solving of PDEs with meshless methods. While development of an hp-adaptive
solution procedure is considered to be the main scientific contribution of this thesis, the
following set of hypotheses have been investigated in the process:

H1: There exists an optimal setup of monomial augmentation in terms of accuracy with
respect to the computational complexity.

H2: The RBF-FD approximation method is superior to the WLS approximation, partic-
ularly in terms of stability of high-order approximations.

H3: The RBF-FD and WLS strong-form numerical methods can be tailored for hp-adaptive
numerical analysis.

H4: The a posteriori error indicator can be constructed solely on assessment of local high-
order operator approximation.
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H5: Spatially variable approximation order can be used to improve accuracy of the solution
with relatively small effect on computational time.

H6: The local strong form hp-refined solution procedure can be used to efficiently solve
elliptic PDE.

H7: Spatially varying approximation methods can be used to reduce computational com-
plexity while maintaining the accuracy of the solution.

In the first chapter (see Chapter 2), we give a brief fundamentals overview of the two
commonly used meshless approximation methods, namely the RBF-FD and DAM — also
referred to as WLS in this thesis — approximations. In Section 2.1, we focus on un-
derstanding the impact of high-order approximations on the accuracy of the numerical
solution as well as on the computational complexity and on the stability of the solution
procedure. We provide an estimate on the optimal setup of augmenting monomials with
respect to the computational complexity, essentially confirming hypothesis H1. Due to the
demonstrated stability of the high-order RBF-FD approximation, this section also partially
confirms hypothesis H3. Section 2.2 addresses hypothesis H7 by discussing the effect of
stencil size on the accuracy of the numerical solution. We show that the stencil size (which
varies with the chosen approximation method) affects not only the computational com-
plexity of the approximation, but also the accuracy of the numerical solution. Finally, in
Section 2.3, we perform a brief stability analysis of the RBF-FD and WLS approximations
with respect to computational node positions, which allows us to confirm hypotheses H2
and H3 and conclude that the RBF-FD is more stable in case of high-order approximations
and therefore more suitable for solution procedures with spatially-varying approximation
orders presented in Chapter 3.

In Chapter 3, we present all the building blocks needed for a meshless hp-adaptive
solution procedure. We start with an implementation of the p-refined numerical solution
and demonstrate the advantages of spatially-variable approximation orders in Section 3.1.
This section presents a practical demonstration of hypothesis H3 and confirms hypotheses
H1 and H5 on a synthetic example. Hypothesis H4 is confirmed in Section 3.2, where
we propose an original a posteriori IMplicit-EXplicit (IMEX) error indicator – required to
eliminate the need for human intervention in a fully adaptive solution procedure. We then
follow the well-established solve-estimate-mark-refine paradigm and present our attempt at
the hp-adaptive solution procedure in detail in Section 3.3, which confirms hypotheses H1
and H3 – H6. The performance of the proposed hp-adaptive solution procedure is demon-
strated on a set of linear elasticity problems from two- and three-dimensional domains,
where improved computational efficiency of the solution procedure is observed. Perhaps
more importantly, we demonstrate that the proposed hp-adaptive solution procedure is
able to obtain numerical solutions to a set of contact problems that are normally difficult
or impossible to solve without a supercomputer.

Another potential strategy to improve the computational efficiency of the solution pro-
cedure is explored in Chapter 4. Our idea is to exploit the distinctive characteristics of dif-
ferent approximation methods. For example, the RBF-FD approximation method is more
resistant to non-optimal node positions [26], [109], [110], while WLS is computationally
less demanding [111]. Combining both characteristics can lead to improved computational
efficiency without notably compromising the accuracy of the numerical solution. There-
fore, in Section 4.1, we propose a hybrid WLS–RBF-FD method where the computational
nodes are divided into two sets: one set using the WLS approach to approximate differen-
tial operators where stability is not critical, and the other set of computational nodes using
the RBF-FD approach in domain segments that are possibly detrimental from a stability
point of view. We confirm hypotheses H7 and H2 and show that such spatially-variable
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approximation method (i) reduces the computational complexity compared to the pure
RBF-FD approximation, (ii) improves the stability of the solution procedure compared to
the pure WLS approximation, and (iii) minimally affects the accuracy of the numerical
solution.

Hypothesis H7 is reaffirmed in Section 4.2, where we discuss an approach enhancing
the computational efficiency by spatially-varying the regularity of computational nodes.
Although meshless methods are formulated without any restrictions regarding the node
layouts, it is generally accepted that quasi-uniformly distributed nodes improve the stabil-
ity of meshless methods. However, even with quasi-uniform nodes generated with state-of-
the-art algorithms, a stable approximation still requires a sufficiently large stencil size. For
instance, for a stable second-order RBF-FD approximation in a two-dimensional domain,
a stencil with n = 12 nodes is recommended [30]. On the other hand, the approximation
of same order on uniform nodes can be performed with a much smaller stencil, such as
n = 5 in a two-dimensional domain, using only a monomial basis [17]. Considering that
a dense linear system must be solved for the approximation of each linear differential op-
erator, leading to a time complexity of O(n3) and an additional O(n) for the evaluation,
smaller stencil sizes are clearly preferred in terms of shorter wall-clock times. Thus, to
enhance the overall computational efficiency while considering the discretization-related
errors, we propose a hybrid discretization that includes uniform and scattered nodes. Uni-
form nodes, which use the computationally cheap MON approximation, are placed far from
geometric irregularities in the domain, while scattered nodes, which use the stable but com-
putationally expensive RBF-FD approximation, are used in their vicinity. In contrast to
previous hybrid discretization or spatially-varying approximation method attempts, both
approaches presented in this dissertation rely solely on the framework of meshless methods
and avoid additional treatment on the transitions.

Finally, some conclusions and future work opportunities are given in Chapter 5.

1.5 Contributions

The dissertation is composed of several published scientific papers. All scientific contribu-
tions of the dissertation are summarized as follows:

C1: There exists a favoured monomial degree m, which should be used in the RBF-FD
approximation basis to minimize the execution times and achieve the desired accuracy
of the numerical solution.

C2: We demonstrate that a minor adjustment to the stencil size can result in a notable
change of accuracy of the numerical solution. We also report on observing interesting
oscillatory behaviour of the solution error.

C3: The high-order RBF-FD approximations are generally more stable and more accurate
than the WLS approximations. This makes the RBF-FD a better candidate for
the development of hp-adaptive solution procedure where stability of the high-order
approximation is crucial.

C4: A well-thought-out spatial distribution of approximation orders can be beneficial in
terms of stability and computational complexity of the solution procedure, and ac-
curacy of the numerical solution.

C5: We develop an original error indicator easily implemented in the context of meshless
methods.
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C6: Verification and performance analyses of the IMEX error indicator, when applied to
two- and three-dimensional linear elasticity problems, demonstrating its versatile use.

C7: We provide a detailed description of all building blocks required to employ a hp-
adaptive meshless solution procedure based on the RBF-FD approximations.

C8: Spatially-varying the approximation method has desirable effects on the stability of
the solution procedure.

C9: Spatially-varying node regularity accompanied with spatially-variable approximation
method can improve the computational efficiency with a negligible cost to the accu-
racy of the numerical solution.
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Chapter 2

The Fundamental Properties of
Meshless Approximation Methods

In the context of meshless methods, linear differential operator L at a specific point xc is
approximated over n stencil nodes xi using the expression:

Lu(xc) ≈
n∑

i=1

wiu(xi), (2.1)

where u is an arbitrary smooth function and weights wi are the unknowns. The equality
of the above equation is enforced for a given set of basis functions, yielding a dense linear
system with weights wi as the only unknowns [13], [31], [66]. In general, the computa-
tion of weights requires O(n3) operations and an additional O(n) for evaluation of the
approximated differential operator.

Throughout the history, various meshless methods for numerical treatment of systems
of PDEs have been introduced. In this dissertation, the focus is shifted towards three
frequently employed approximation methods:

• the Radial Basis Function-generated Finite Differences (RBF-FD) [112],

• the Diffuse Approximation Method (DAM) [48] also referred to as the Weighted Least
Squares (WLS) approach, and

• the simplest version of collocation methods operating on uniform nodes [113] referred
to as MON throughout this thesis.

All three approximation methods fall under the category of strong-form meshless methods
used for solving boundary value problems. RBF-FD is recognized for its stability on scat-
tered nodes [66], but at the cost of high computational complexity due to larger stencil
size requirements for stable approximations [30], [31] and due to large approximation ba-
sis1. In comparison, WLS is less susceptible to non-optimal domain discretizations [111]
but computationally more efficient due to its smaller approximation basis2. The MON
approximation is the cheapest among the three methods (requiring a stencil size of n = 5
compared to the recommended n = 12 for RBF-FD in a two-dimensional domain and a
second-order approximation). However, it is also considered to be the least stable, as it
can only operate on uniform nodes.

1The RBF-FD approximation basis in this thesis is limited to consist of Polyharmonic Splines (PHS)
augmented with monomials.

2In this thesis, the WLS approximation basis consists solely of monomials up to degree m.
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The objective of this chapter is to examine the high-order approximation methods,
with a specific focus on understanding the fundamental characteristics of commonly used
RBF-FD and WLS approximation methods. By analysing both, we aim to shed some light
on their capabilities, limitations, and potentials for increasing the computational efficiency,
particularly for application in hp-adaptive solution procedures presented in Chapter 3 and
spatially-varying approximation methods presented in Chapter 4.

2.1 Monomial Augmentation Guidelines for RBF-FD from
Accuracy Versus Computational Time Perspective

A common approach to increase the accuracy of the numerical solution is to increase
the approximation order [30], [32], [66], [100]. In meshless methods, the control over the
approximation order is enabled through approximation basis, as the highest monomial
from the approximation basis also determines the approximation order [30], [31]. However
increasing the approximation order also increases the computational complexity, as more
monomials are added to the approximation basis. This is particularly evident in case of
the RBF-FD approximation, as the recommended stencil size n for a stable approximation
depends on the highest monomial order m in a d-dimensional basis following the expression

n = 2

(
m+ d

d

)
, (2.2)

as discussed by Bayona [30].
Therefore, for improved computational efficiency, employing the lowest monomials is

theoretically preferred. However, after an in-depth investigation of the approximation
order and its impact on the numerical solution and solution procedure, it becomes evident
that higher monomial degrees can lead to a faster attainment of the numerical solution of
the desired accuracy for a given domain discretization.

Contributions.
This section represents contribution C1. The publication below demonstrates that there
exists a favoured monomial degree m, which should be used in the RBF-FD approximation
basis to minimize the execution times and achieve the target accuracy of the numerical
solution. We provide a rule of thumb to estimate the required monomial degree value m,
which yields the desired accuracy of the solution in a time-efficient manner.

Additionally, by providing a solution to a four-dimensional Poisson problem, we also
demonstrate that the meshless methods are indeed dimension-agnostic.

Addressed hypotheses.
Our analyses reveal two findings. Firstly, we establish that the approximation order can
be effectively controlled with the highest monomial degree m utilized in the approximation
basis. Secondly, we emphasize that choosing the appropriate approximation order becomes
non-trivial when both the computational efficiency of the solution procedure and accuracy
of the numerical solution are considered. This observation confirms hypothesis H1.

The following publication also supports hypothesis H3, indicating that the RBF-FD
approximation is stable and accurate even for high-order approximations.
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Publications included in this section:

• M. Jančič, J. Slak, and G. Kosec, “Monomial augmentation guidelines for
RBF-FD from accuracy versus computational time perspective,” Journal of
Scientific Computing, vol. 87, no. 1, pp. 1–18, 2021

Regarding my contribution: I made a literature overview of the topic, participated
in planning, performed the experiments and jointly prepared the manuscript with
co-authors.

Note: During the proof-reading process of the publication below, a typo
was overlooked. In the publication process, all binomial symbols were replaced by
fractional expressions. Therefore, while reading the following publication, keep in
mind that the number of monomials is s =

(
m+d
d

)
and not s = m+d

d as denoted in
the publicly available version.
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Abstract
Local meshless methods using RBFs augmented with monomials have become increasingly
popular, due to the fact that they can be used to solve PDEs on scattered node sets in a
dimension-independent way, with the ability to easily control the order of the method, but
at a greater cost to execution time. We analyze this ability on a Poisson problem with mixed
boundary conditions in 1D, 2D and 3D, and reproduce theoretical convergence orders practi-
cally, also in a dimension-independent manner, as demonstrated with a solution of Poisson’s
equation in an irregular 4D domain. The results are further combined with theoretical com-
plexity analyses and with conforming execution time measurements, into a study of accuracy
versus execution time trade-off for each dimension. Optimal regimes of order for given target
accuracy ranges are extracted and presented, along with guidelines for generalization.

Keywords Meshless methods · RBF-FD · Poisson’s equation · n-dimensional ·
Convergence rates · Optimal order

1 Introduction

TheRadial Basis Function-generated FiniteDifferences (RBF-FD), a local strong formmesh-
free method for solving partial differential equations (PDEs) that generalizes the traditional
Finite Difference Method (FDM), was first mentioned by Tolstykh [32]. Since then, the
method has become increasingly popular [9], with recent uses in linear elasticity [31], con-
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tact problems [28], geosciences [8], fluid mechanics [14], dynamic thermal rating of power
lines [20], advection-dominated problems [21,25], financial sector [22], etc.

RBF-FD, similarly to other mesh-free methods, relies on approximation of differential
operators on scattered nodes, which is an important advantage over mesh-based methods,
as node generation is considered much easier than the mesh generation. In fact, mesh gen-
eration is often the most cumbersome part of the solution procedure in traditional methods,
which, especially in 3D geometries, often requires significant assistance from the user. When
meshless methods were first developed, many solutions used available mesh generators for
generating discretization nodes and discarding the connectivity information after the mesh
had been generated [16]. Such approach is computationally wasteful, does not generalize to
higher dimensions, and some authors even reported that it failed to generate distributions
of sufficient quality [26]. Since then, various node positioning algorithms have been pro-
posed. Popular algorithms use iterative approaches [12,17], advancing front methods [7,18]
or sphere packing methods [5]. In 2018, a pure meshless algorithm based on Poisson disk
sampling [4]was introduced. Later that year, the first dimension-independent node generation
algorithm that supported distributions with spatially variable density appeared [30], where
the authors also demonstrated the stability of RBF-FD on scattered nodes, even for complex
non-linear problems in 3D without any special treatment of stencil selection as proposed
in [23]. Instead, a cluster of nearest neighboring nodes proved to be a satisfactory stencil that
can also be efficiently implemented in dimension-independent code, using specialized data
structures, such as k-d tree [35].

A common drawback of often used RBFs, such as Gaussians or Hardy’s multiquadrics, is
that they include a shape parameter that crucially affects accuracy and stability of the approxi-
mation [33]. If the shape parameter is kept constant, themethod converges, but stability issues
arise when computing in the standard basis, due to high condition numbers of the colloca-
tion matrices. To fix the stability issue, more sophisticated algorithms can be used, such as
RBF-CP, RBF-QA, RBF-GA and others [34], but such methods sometimes add significant
additional costs. A simpler solution for the stability issue is to scale the shape parameter so
that the product of the shape parameter and the nodal spacing is constant. However, this can
lead to local approximations that are not convergent - this phenomenon has been called lack
of convergence due to stagnation errors [6]. Stagnation can be fixed by adding monomial
terms that ensure consistency up to a certain order. This technique has been used together
with Polyharmonic splines (PHS) as RBFs, which have an additional advantage of not hav-
ing a shape parameter [3]. In addition, the order of added monomials directly effects the
order of the RBF-FD approximation, effectively enabling control over the convergence rate
of the RBF-FD [2]. Various successful applications of RBF-FD with PHS have since been
demonstrated, both in 2D and in 3D [3,26,30]. The dimensional independence has already
been noted by, e.g., Ahmad et al. [1], but the high order RBF-FD has not yet been thoroughly
analyzed with computational efficiency in mind, as the authors were more focused on solving
the time-dependent part of the PDE of interest.

Although the RBF-FD formulation is dimension-independent, in the sense that the same
formulation can be used in 1D, 2D, 3D and higher, translating this elegant mathematical
formulation and algorithms into actual efficient computer code is far from trivial. In this
paper, we present a dimension-independent PDE solution procedure based on our in-house
dimension-agnostic implementation [29] of RBF-FD. By dimension-agnostic implementa-
tion we refer to the fact that exactly the same code can be used to solve problems in one, two,
three or more dimensional spaces, while values of parameters are optimised for each dimen-
sion separately. The paper describes all solution procedure elements in detail and presents
a thorough analysis of accuracy and execution time in one, two and three dimensions, on a
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Poisson problem on scattered nodes with mixed boundary conditions. To fully illustrate the
dimension independence, a solution of a 4-dimensional problem on an irregular domain is
presented. A C++ implementation of all discussed solution elements is freely available for
download [13].

The rest of the paper is organized as follows: In Sect. 2, the RBF-FD solution procedure
is presented, in Sect. 3, the model problem is investigated, in Sect. 4, an additional example
is shown, and in Sect. 5, the conclusions are presented.

2 RBF-FD Solution Procedure

In this section, the main steps of the RBF-FD solution procedure are described. First, the
domain is populated with scattered nodes. Once the nodes are positioned, in each discretiza-
tion node the approximation of the partial differential operator is performed, resulting in
stencil weights. Finally, in the PDE discretization phase, the PDE is transformed into a sys-
tem of linear equations, whose solution stands for a numerical solution of the considered
PDE.

2.1 Positioning of Nodes

In the node generation algorithm, candidate nodes are generated on a d-sphere in a d-
dimensional space. This effectively means that the node positioning algorithm remains the
same for every number of dimensions. However, some parameters, e.g. the number of can-
didates, can be optimized for various numbers of dimensions.

The node positioning algorithm takes as an input a domain Ω ⊂ R
d with a spacing

function h : Ω → (0,∞) and optionally a list of arbitrary starting “seed nodes” X ⊂ Ω ,
often distributed along the boundary. It returns a set of nodes that are suitable for strong-form
discretizations and distributed over Ω with mutual spacing around a point p approximately
h(p).

The algorithm used in this paper processes nodes in the input list in order. For each node
p, a number of expansion candidates distributed uniformly on a sphere centered at p, of
radius h(p), are examined. If a candidate is inside the domain and sufficiently away from
the already processed nodes, it is accepted and added to the list X . During the course of the
algorithm, the list X is implicitly partitioned into already processed nodes, the current node,
and future queued nodes. Figure 1 shows this partition at a selected iteration in 2D and 3D,
along with the generated candidates from the current node, and flags the accepted ones.

Once all the elements of the list X have been processed, X is returned as the resulting set
of discretization nodes. Further details and analyses of the algorithm are available in [30].
The stand-alone implementation of the algorithm is available online [27] and also included
as a part of our in-house implementation of RBF-FD, theMedusa library [29].

2.2 Approximation of Partial Differential Operators

Consider a partial differential operator L at a point xc. Approximation of L at a point xc is
sought using an ansatz

(Lu)(xc) ≈
n∑

i=1

wi u(xi ), (1)
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Fig. 1 Node positioning algorithm during candidate generation phase

where xi are the neighboring nodes of xc which constitute its stencil, wi are called stencil
weights, n is the stencil size and u is an arbitrary function.

This form of approximation is desirable, since operator L at point xc is approximated by
a linear functional wL(xc)T, assembled of weights wi ,

L|xc ≈ wL(xc)T (2)

and the approximation is obtained using just a dot product with the function values in neigh-
boring nodes. The dependence of wL(xc)T on L and xc is often omitted, with wL(xc)T

written simply as w.
To determine the unknown weights w, equality of (1) is enforced for a given set of

basis functions. A natural choice are monomials, which are also used in FDM, resulting
in the Finite Point Method [24]. However, using monomial basis suffers from potential ill
conditioning [19]. An alternative approach is using an RBF basis.

In the RBF-FD discretization, the equality is satisfied for radial basis functions φ j . These
are RBFs, generated by a function φ : [0,∞) → R, centered at neighboring nodes of xc,
given by

φ j (x) = φ(‖x − x j‖). (3)

Each φ j , for j = 1, . . . , n, corresponds to one linear equation

n∑

i=1

wiφ j (xi ) = (Lφ j )(xc) (4)

for unknowns wi . Assembling these n equations into matrix form, we obtain the following
linear system:

⎡

⎢⎣
φ(‖x1 − x1‖) · · · φ(‖xn − x1‖)

...
. . .

...

φ(‖x1 − xn‖) · · · φ(‖xn − xn‖)

⎤

⎥⎦

⎡

⎢⎣
w1
...

wn

⎤

⎥⎦ =
⎡

⎢⎣
(Lφ(‖x − x1‖))|x=xc

...

(Lφ(‖x − xn‖))|x=xc

⎤

⎥⎦ , (5)

where φ j have been expanded for clarity.
The above system can be written more compactly as

Aw = �φ. (6)
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The matrix A is symmetric, and for some basis functions φ even positive definite [33].
Many commonly used RBFs, such as Hardy’s multiquadrics or Gaussians, depend on

a shape parameter, which governs their shape and consequently affects the accuracy and
stability of the approximation. In this work, we use polyharmonic splines (PHS), defined as

φ(r) =
{
rk, k odd

rk log r , k even
, (7)

to eliminate the need for a shape parameter tuning where r denotes the Euclidean distance
between two nodes. Without monomial augmentation, local approximations using only PHS
are not convergent, nor do we have any guarantees of solvability. However, if the approxi-
mation given by (5) is augmented with polynomials, we obtain convergence and conditional
positive definiteness, provided that the stencil nodes form a polynomially unisolvent set [33].
Augmentation is performed as follows: Let p1, . . . , ps be polynomials forming the basis of
the space of d-dimensional multivariate polynomials up to and including total degreem, with

s = m + d

d
. In addition to the RBF part of the approximation, an exactness constraint

s∑

i=1

wi p j (xi ) = (Lp j )(xc) (8)

for monomials, is enforced. These additional constraints make the approximation overdeter-
mined, which is treated as a constrained optimization problem [6]:

min
w

(
1

2
wTAw − wT�φ

)
, subject to PTw = �p. (9)

For practical computation, the optimal solution can be expressed as a solution of a linear
system

[
A P
PT 0

] [
w

λ

]
=

[
�φ

�p

]
, P =

⎡

⎢⎣

p1(x1) · · · ps(x1)
.
.
.

. . .
.
.
.

p1(xn) · · · ps(xn)

⎤

⎥⎦ , �p =
⎡

⎢⎣

(Lp1)|x=xc
.
.
.

(Lps)|x=xc

⎤

⎥⎦ , (10)

where P is a n × s matrix of polynomials evaluated at stencil nodes, �p is the vector of
values assembled by applying the considered operator L to the polynomials at xc, and λ are
Lagrange multipliers. Weights obtained by solving (10) are taken as approximations of L
at xc, while values λ are discarded. The system (10) is solvable if the stencil nodes form a
polynomially unisolvent set. This could potentially be problematic near the boundary, where
it might happen that all stencil nodes would be e.g. colinear or coplanar, but experience shows
that this happens only with stencil sizes which are too small to be a feasible approximation.
With large enough stencil sizes, stencils near the boundary always include at least some
internal nodes. We did not use any special techniques to ensure unisolvency, and did not run
into any unisolvency-related issues.

The exactness of (8) ensures convergence behavior and control over the convergence
rate, since the local approximation has the same order as the polynomial basis used [3],
while the RBF part of the approximation (5) takes care of potential ill-conditioning in purely
polynomial approximation [6].
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2.3 PDE Discretization

Consider the boundary value problem

Lu = f in Ω, (11)

u = gd on Γd , (12)

n · ∇u = gn on Γn, (13)

with ∂Ω = Γd ∪ Γn , where the union is disjoint. The domain Ω is discretized by placing N
scattered nodes xi with quasi-uniform internodal spacing h, of which Ni are in the interior,
Nd on the Dirichlet and Nn on the Neumann boundary. Additionally, Ng ghost or fictitious
nodes are added outside the domain on both Neumann and Dirichlet boundary, by translating
the Nd and the Nn nodes on ∂Ω for distance h in the normal direction.

In the next step, stencilsN (xi ) consisting of neighboring nodes are selected for each node
xi . Themost commonapproach is to compute stencils automatically, by takingn closest nodes
for each node (including the node itself) as its stencil.

Next, partial differential operators appearing in the problem, such asL and ∂i , are approx-
imated at nodes xi , using the procedure described in Sect. 2.2. The computed stencils wL
and w∂i are stored for later use.

For each interior node xi , the equation (Lu)(xi ) = f (xi ) is approximated by a linear
equation

wL(xi )Tu = f , (14)

where vectors f and u represent values of function f and unknowns u in stencil nodes of
xi . For each Dirichlet boundary node xi , we have the equation

ui = gd(xi ). (15)

For Neumann boundary nodes xi , the linear equation

d∑

j=1

n jw∂ j (xi )
Tu = gd (16)

approximates the boundary condition, where similarly to before, vectors gd and u represent
values of function gd and unknowns u in stencil nodes of xi . Another set of Ng equations is
needed to determine the unknowns introduced by ghost nodes. Additionally to (15) and (16),
we also enforce (14) to hold for boundary nodes.

All Ni + Nd + Nn + Ng equations are assembled into a sparse system with n(Ni +
Nn + Ng) + Nd non-zero elements in general. The solution uh of this system is a numerical
approximation of u, excluding the values obtained in ghost nodes.

2.4 Note on Implementation

We implemented the solution procedure described in this section in C++ using object oriented
approach and C++’s strong template system to achievemodularity and consequent dimension
independence. The strongest advantage of the presented method is that all building blocks,
namely node positioning, stencil selection, differential operator approximation and PDE
discretization, are independent and can therefore be elegantly coded as abstract modules, not
knowing about each other in the core of their implementation. To ease the implementation of
the solution procedure, additional abstractions, such as operators, basis functions, domain
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shapes and approximations, are introduced, acting as interfaces between the main blocks.
For example, to construct a RBF-FD approximation, one combines the RBF basis class with
an augmented RBF-FD class, computes stencil weights and supplies the computed weights
into the “operators” class that enables the user to explicitly transform governing equations
into the C++ code, as demonstrated in the listing 1.

Vector and scalar fields are implemented as plain arrays, using a well developed linear
algebra library [11] that also implements or otherwise supports various direct and iterative
linear solvers. Please, refer to our open source Medusa library [29] for more examples and
features.

3 Numerical Example

The behavior of the proposed solution procedure and its implementation are studied on
a Poisson problem with mixed boundary conditions. The aim is to analyze accuracy and
convergence properties in one, two and three dimensions. Furthermore, theoretical compu-
tational complexity is discussed and supported by experimental measurements of execution
time, which allows us to quantify the accuracy versus execution time trade-off.

The problem is solved on an irregular domain Ω , defined as Ω = (B0 ∪ B1) \ (B2 ∪ B3),
where

B0 =
{
x ∈ R

4,

∥∥∥∥x − 1
2

∥∥∥∥ <
1

2

}
, (17)

B1 =
{
x ∈ R

4,

∥∥∥∥x − 1
5

∥∥∥∥ ≤ 1

4

}
, (18)

B2 =
{
x ∈ R

4,

∥∥∥∥x − 1
2

∥∥∥∥ ≤ 1

10

}
and (19)

123

18 Chapter 2. The Fundamental Properties of Meshless Approximation Methods



9 Page 8 of 18 Journal of Scientific Computing (2021) 87 :9

B3 =
{
x ∈ R

4, ‖x − 1‖ ≤ 1

2

}
(20)

are balls in R
d . For later use, the boundary ∂Ω is divided into Γd and Γn , the left and the

right half of the boundary, respectively

Γd =
{
x ∈ ∂Ω, x1 <

1

2

}
, (21)

Γn =
{
x ∈ ∂Ω, x1 ≥ 1

2

}
. (22)

3.1 Governing Equation

Numerical solution uh of Poisson’s equation with both Dirichlet and Neumann boundary
conditions is studied:

∇2u(x) = flap(x) in Ω, (23)

u(x) = f (x) on Γd , (24)

∇u(x) = f grad(x) on Γn . (25)

Here, the right hand side was chosen as

f (x) = E(x)

g(x)
, (26)

where

E(x) = exp
( d∑

i=1

xaii

)
, g(x) = 1 + xTHx, ai = 2 + i, (27)

H is a Hilbert matrix of size d , and êi is the i-th unit vector. The values of Laplacian and the
gradient are computed from f as

flap(x) = 8E(x)

g(x)3
(Hx)T(Hx) − 2E(x)

g(x)2

[
2(Hx)T

( d∑

i=1

ai x
ai−1
i êi

)
+ Tr(H)

]

+ E(x)

g(x)

[ d∑

i=1

ai (ai − 1)xai−2
i + (

d∑

i=1

ai x
ai−1
i êi )T

( d∑

i=1

ai x
ai−1
i êi

)]
, (28)

f grad(x) = E(x)

g(x)

[ d∑

i=1

ai x
ai−1
i êi − 2

g(x)
(Hx)T

]
. (29)

The closed-form solution f of the above problem is a rational non-easily separable function
allowing us to validate the numerically obtained solution uh . The computed uh is only known
at discretization points xi . The errors between uh and u aremeasured in three different norms:

e1 = ‖uh − u‖1
‖u‖1 , ‖u‖1 = 1

N

N∑

i=1

|ui |, (30)

e2 = ‖uh − u‖2
‖u‖2 , ‖u‖2 =

√√√√ 1

N

N∑

i=1

|ui |2, (31)
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Fig. 2 Computed numerical solution uh for d = 1, 2, 3, from left to right. Chosen highest polynomial degree
m and node count N are as follows: N = 64 and m = 4 for d = 1, N = 1286 and m = 2 for d = 2 and
N = 3850 and m = 4 for d = 3

Table 1 Support sizes in different
dimensions for various
augmentation orders

m d = 1 d = 2 d = 3

−1 3 5 7

0 3 5 7

2 6 12 20

4 10 30 70

6 14 56 168

8 18 90 330

e∞ = ‖uh − u‖∞
‖u‖∞

, ‖u‖∞ = max
i=1,...,N

|ui |. (32)

The problem (23–25) is studied in d ∈ {1, 2, 3} dimensions. Scattered computational
nodes are generated using a dimension-agnostic node positioning algorithm described in
Sect. 2.1. Ghost nodes were added to both Dirichlet and Neumann boundaries, and are
excluded from any post-processing. An example of node distribution is shown in Fig. 2.

Numerical results are computed using RBF-FD with PHS radial basis function φ(r) = r3

and monomial augmentation, as described in Sect. 2. Radial function was kept same for all
cases; however, various orders of monomial augmentation were tested. For each dimension
d , solution to the problem is obtained using monomials up to and including degree m, for
m ∈ {−1, 0, 2, 4, 6, 8}, where m = −1 represents a pure RBF case with no monomials
added. Only even orders of m were used, because the same order of convergence is observed
with odd powers, but at a higher computational cost [6].

Stencils for each node were selected by taking the closest n nodes, where n was equal to
two times the number of augmenting monomials, as recommended by Bayona [3], or at least
a FDM minimum of 2d + 1, i.e.

n = max

{
2
m + d

d
, 2d + 1

}
. (33)

Specific values for m, n and d are presented in Table 1.
BiCGSTAB with ILUT preconditioner was used to solve the sparse system. Global toler-

ance was set to 10−15 with a maximum number of 500 iterations, while the drop tolerance
and fill-factor were dimension dependent: 10−4 and 20 for d = 1, 10−4 and 30 for d = 2,
and 10−5 and 50 for d = 3, respectively.
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Fig. 3 Plots of global sparse matrices (top row) and spectra of the Laplacian differentiation matrices (bottom
row), corresponding to the solutions in Fig. 2

Figure 2 shows three examples of computed numerical solution uh for each domain dimen-
sion d . The solutions are shown for various values of m and for small enough values of N to
also show nodal distributions.

In the top row of Fig. 3 global sparse matrices are shown. Additionally, spectra of the
Laplacian differentiation matrices for cases shown in Fig. 2 are shown in the bottom row of
Fig. 3, to better assess the approximation quality. For all three cases, the eigenvalues have
negative real parts with relatively small spread around the imaginary axis.

3.2 Convergence Rate

When using RBF-FD augmented with monomials, consistency is ensured up to order m,
which makes the expected convergence rate of at least O(hm). Here, h denotes the nodal
spacing, which is inversely proportional to d

√
N .

Figure 4 shows e1, e2 and e∞ errors for various augmentation orders in two dimensions.
The three errors have very similar values and similar convergence rates. Convergence rates
were estimated by computing the slope of a least-squares linear trend line over the appropriate
subset of the data. Divergence is observed in the m = 0 and the m = −1 case, which is
consistent with properties of PHS RBFs. These two cases are excluded from any further
analyses in this paper.

In the rest of the discussion, only e∞ is used for convergence analysis, since it measures
the lowest convergence rates and does not involve averaging, contrary to e1 and e2.

Figure 5 shows the e∞ error for d = 1, d = 2, and d = 3 dimensions. The span of the
horizontal axis was chosen in such a way that the total number of nodes in the largest case
was around N = 105 in all dimensions. The observed convergence rates are independent of
domain dimension and match the predicted order O(hm).

All of the plots in the d = 1 case eventually diverge, due to the errors in finite precision
arithmetic, as previously noted for interpolation by Flyer et al. [6]. The dotted line in the
d = 1 case shows the ε/h2 line, where ε ≈ 2.22 · 10−16. The numerically obtained solution
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k = −6.75
k = −8.42

m = 2 m = 4 m = 6 m = 8 m = −1 m = 0

Fig. 4 Errors between analytical solution u and numerically obtained uh , measured in three different norms.
Computed are e1, e2 and e∞, from left to right, respectively, for the d = 2 dimensional case

102 104
1√
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101
3√
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k = −4.12
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k = −8.32

m = 2 m = 4 m = 6 m = 8

Fig. 5 Convergence rate of e∞ for all domain dimensions d = 1, 2, 3, from left to right, respectively

for the d = 3 and m = 8 case is unstable for smaller N . For higher node counts N , the
expected convergence behavior is obtained, as seen from the fitted dashed line.

3.3 Computational Efficiency

The importance of several different stages of uh computation is studied. The computational
procedure is divided into

– node positioning, where quasi-uniform placing of nodes in the domainΩ and the domain
boundary ∂Ω , including positioning of Ng ghost nodes, takes place. Node positioning
time also includes finding the stencils for each node in the domain,
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– stencil weights computation, where basis functions are defined and shapes for the Laplace
operator and first derivatives are stored,

– system assembly, where computed weights are assembled in a sparse matrix and its
right-hand side is computed and

– system solution, where the sparse system is solved.

3.3.1 Computational Complexity

The theoretical computational complexity is analyzed in this section. The total number of
nodes will be denoted as Nt = N + Ng; however, as Ng nodes are distributed only along the

boundary, it holds that Ng = O(N
d−1
d ) and thus Nt = O(N ).

The node positioning algorithm has complexity O(Nt log Nt ) [30]. Finding stencils of n
closest nodes takes O(nNt log Nt ) time, using a fast spatial search structure, such as a k-d
tree. The computation of stencils weights performs Nt solutions of linear systems of size

(n + s) × (n + s), where s = m + d

d
is the number of monomials used for augmentation.

Since n was chosen to be at least 2s, it holds that s = O(n). Using LU decomposition or
any other standard solution procedure for dense linear systems takes O((n + s)3) = O(n3)
time. The total cost of weight computation is therefore O(n3Nt ).

With appropriate pre-allocation of storage for the sparse matrix, system assembly takes
linear time in number of stencil nodes for each node, and right hand-side computation taken
O(1) per node. The total cost of system assembly is thus O(nNt ).

The solution of the sparse system uses iterative BiCGSTAB with ILUT preconditioner,
whose speed of convergence depends on the matrix properties.

The time complexity of the complete procedure is

O(nNt log Nt + n3Nt ) + T ,

where T is the complexity of the sparse solver.

3.3.2 Execution Time

In this section, we measure execution time spent on different parts of the solution proce-
dure. All computations were performed on a single core of a computer with Intel(R)
Xeon(R) CPU E5-2620 v3 @ 2.40GHz processor and 64 GB of DDR4 memory.
Code was compiled using g++ (GCC) 8.1.0 for Linux with -O3 -DNDEBUG flags.

Total execution times are shown in Fig. 6 and correspond to accuracy results in Fig. 5.
The computational time grows with N and with m, as expected from theoretical predictions
in Sect. 3.3.1.

Absolute times of different computation stages and their proportions to the total time are
shown in Fig. 7, on the left and the right side, respectively. The observed growth rates match
the theoretical complexities predicted for node positioning, weight computation and system
assembly.

Relative execution times provide additional insight into the execution of the solution
procedure and into optimization and parallelization opportunities. The majority of the com-
putational time is usually spent on either computing the stencil weights (for smaller N ) or on
system solution (for large N ). Similar behavior was observed for otherm and in other dimen-
sions, with different percentage of total time spent on node positioning, weight computation
and system solution [15].
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Fig. 6 Median of 10 total execution times of uh computation for various setups
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Fig. 7 Absolute and relative times of different parts of the solution procedure for d = 3 and m = 4

3.4 Accuracy Versus Execution Time

In the previous sections, we have shown that using higher orders, both accuracy and execution
time increase. In this section, we analyze the accuracy versus execution time trade-off. Fig-
ure 8 shows e∞ error plotted with respect to the total computational time needed to achieve
it.

Significant differences can be observed between different orders of monomial augmenta-
tion. For prototyping or any other sort of quick scanning of how or if the computed solution
uh converges, using polynomials of a lower degree is undeniably very beneficial – the com-
putation of uh takes little time, but at a cost of limited accuracy. When higher accuracy is
required, using polynomials of a higher degree can lead to a several orders faster computation
time. In some cases, using higher orders might even be a necessity, e.g. for d = 2, where
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Fig. 8 Accuracy versus execution time trade-off for different orders of monomial augmentation

Table 2 Optimal setups for various desired target accuracy ranges in 1, 2 and 3 dimensions

d = 1 d = 2 d = 3

Target accuracy e∞ Optimal m Target accuracy e∞ Optimal m Target accuracy e∞ Optimal m

100 to 10−4 2 100 to 10−2 2 100 to 10−1 2

10−4 to 10−6 4 10−2 to 10−5 4 10−1 to 10−3 4

10−6 to 10−8 6 10−5 to 10−8 6 10−3 to 10−5 6

10−8 to 10−13 8 10−8 to 10−12 8 10−5 to 10−7 8

accuracy of e∞ ≈ 10−10 is reached the fastest by m = 8, while solution for m = 2 would
require N out of reasonable computing capabilities. The findings are summarized in Table 2.

Using the data in the table, we can extract a rough general recommendation. As a rule of
thumb, for the desired accuracy e∞ = 10−k and dimension d , the recommended order of
augmentation is

m = 5

4
k + 4

5
d − 2, (34)

rounded to the nearest positive even integer. Even though the data points in the table are close
to being planar, the formula (34) does not necessarily generalize well. A more general rule
is that the order of monomials should be increased with every two to three orders of increase
in accuracy, and that higher order augmentation should be more aggressively used in higher
dimensions.
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4 Additional Example

In addition to already solved cases, we nowdemonstrate a solution of a 4-dimensional Poisson
problem (23–25). The irregular domainΩ is now defined asΩ = B0 \(B1∪ B2∪ B3), where

B0 =
{
x ∈ R

4,

∥∥∥∥x − 1
2

∥∥∥∥ <
1

2

}
, (35)

B1 =
{
x ∈ R

4,

∥∥∥∥x −
(
1

2
, 1,

1

2
,
1

2

)∥∥∥∥ ≤ 1

4

}
, (36)

B2 =
{
x ∈ R

4, ‖x − 0‖ ≤ 13

16

}
and (37)

B3 =
{
x ∈ R

4,

∥∥∥∥x −
(
1

2
,
1

2
,
3

4
,
1

2

)∥∥∥∥ ≤ 1

8

}
(38)

are balls in R
4.

Dirichlet and Neumann boundary conditions are defined similarly to before, i.e., Γd is the
left half and Γn is the right half of ∂Ω . Additionally, the boundary of the smallest ball ∂B3

is added to the Dirichlet boundary:

Γd =
{
x ∈ ∂Ω, x1 <

1

2

}
∪ ∂B3, (39)

Γn =
{
x ∈ ∂Ω, x1 ≥ 1

2

}
\ ∂B3. (40)

Scattered computational nodes were positioned using the same dimension-agnostic node
positioning algorithm as before. A numerical solution uh was obtained using RBF-FD with
PHS φ(r) = r3 augmented with polynomials of degree m = 4, according to our rule of
thumb (34) for the desired accuracy e∞ = 10−2.

Approximately N = 85000 nodes were positioned in Ω and closest n = 950 nodes were
selected as stencils for each node from the domain. Ghost nodes were, as in the previous case,
added to both Dirichlet and Neumann boundaries, and excluded from any post-processing.
The final system was solved using a direct sparse solver.

Figure 9 shows the numerically obtained solutions. Four three-dimensional slices are
shown, defined by setting one coordinate to xi = 1/2. Modified Sheppard’s interpolation
algorithm [10] was used to interpolate the solution to an intermediate grid, used for plotting
the slices.

The solution is well-behaved even in 4 dimensions; however, a relatively large support
size is needed to obtain a desirable numerical stability. The errors equal to e1 = 6.83 · 10−4,
e2 = 2.11·10−3 and e∞ = 1.72·10−2. The total computational time spentwas approximately
15 hours.

5 Conclusions

The message of this paper is twofold. First, we demonstrated that it is possible to design an
appropriately abstract implementation, which encompasses most of the meshless mathemat-
ical elegance, allowing the user to construct a high order dimension-independent solution
procedure. To fully demonstrate the dimensional independence, we also presented a solu-
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Fig. 9 3-dimensional cross sections of a solution to a 4-dimensional Poisson problem

tion of a 4-dimensional Poisson’s problem on an irregular domain with both Neumann and
Dirichlet boundary conditions.

Second, we used the devised implementation to analyze the increasing execution time that
comes tiedwith high order augmentation, to determine the conditions of optimal computation
efficiency for a desired target accuracy.

The analyses are performed on the solution of a Poisson problem with mixed boundary
conditions in one, two and three dimensions. To avoid shape parameter dependency, we
used PHS augmented with monomials as RBFs. Scattered nodes were positioned with a
dedicated dimension-agnostic node generation algorithm. The theoretical findings on how
the highest order of the augmenting polynomial directly controls the approximation rate of
the RBF-FD independently of the domain dimension are verified. A detailed breakdown of
the computational complexity and the execution time of different computational stages is also
provided, to ensure that the implementation agrees with the theoretical predictions. Finally,
the high order versus execution time trade-off is analyzed and the findings are summarized in
Fig. 8 and Table 2. While the analyses were done only for this particular problem, the results
can be generalized in the sense that for a high target accuracy, a high order method is a better
choice, and vice versa.

Another interestingpoint are the increasing stencil sizes required for highordermethods, as
shown in Table 1. Especially in higher dimensions, this cost quickly becomes unmanageable.
Therefore, our future work will be focused primarily on better understanding of the impact
of the stencil size on the approximation quality.
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2.2 Oscillatory Behaviour of the RBF-FD Approximation Ac-
curacy Under Increasing Stencil Size

This section extends RBF-FD analyses in terms of the stencil size impact on the accuracy
of the numerical solution. While some researchers proposed dedicated stencil selection
algorithms [28], [64], a common approach is to select n nearest neighbors based on the
Euclidean distance. For the latter approach, a stencil size of n = 2

(
m+d
d

)
for stable RBF-

FD of order m in a d-dimensional domain is recommended [30].
Our analyses show that this recommendation may not be optimal particularly in terms

of solution’s accuracy.

Contributions.
This section represents contribution C2. We show that a slight but non-trivial adjustment
to the stencil size can result in a significant improvement of solution’s accuracy, with com-
parable or even shorter execution times, sometimes yielding up to an order of magnitude
more accurate numerical solutions. We also report on observing interesting oscillatory
behaviour of the solution error. The oscillatory behaviour is yet to be fully understood,
nevertheless, we believe this observation could be beneficial towards the definition of an
optimal stencil size.

Addressed hypotheses.
Since the three approximation methods subject to research in this dissertation come with
different stencil size recommendations, which clearly affects the computational complexity,
the publication below partially confirms hypothesis H7.

Publications included in this section:

• A. Kolar-Požun, M. Jančič, M. Rot, et al., “Oscillatory behaviour of the rbf-
fd approximation accuracy under increasing stencil size,” in Computational
Science – ICCS 2023, J. Mikyška, C. de Mulatier, M. Paszynski, et al., Eds.,
Cham: Springer Nature Switzerland, 2023, pp. 515–522, isbn: 978-3-031-
36027-5

Regarding my contribution: I made a literature overview of the topic, participated
in planning, prepared the preliminary analyses and jointly prepared the manuscript
with co-authors.
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Ljubljana, Slovenia

{andrej.pozun,mitja.jancic,miha.rot,gregor.kosec}@ijs.si
2 Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
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Abstract. When solving partial differential equations on scattered
nodes using the Radial Basis Function generated Finite Difference (RBF-
FD) method, one of the parameters that must be chosen is the stencil size.
Focusing on Polyharmonic Spline RBFs with monomial augmentation,
we observe that it affects the approximation accuracy in a particularly
interesting way - the solution error oscillates under increasing stencil
size. We find that we can connect this behaviour with the spatial depen-
dence of the signed approximation error. Based on this observation we
are then able to introduce a numerical quantity that indicates whether
a given stencil size is locally optimal.

Keywords: Meshless · Stencil · RBF-FD · PHS

1 Introduction

Radial Basis Function generated Finite Differences (RBF-FD) is a method
for solving Partial Differential Equations (PDEs) on scattered nodes that has
recently been increasing in popularity. It uses Radial Basis Functions (RBFs)
to locally approximate a linear differential operator in a chosen neighbourhood,
generalising the well known finite difference methods. This neighbourhood used
for the approximation is referred to as the stencil of a given point and is com-
monly chosen to simply consist of its n closest neighbours.

Among the different possible choices of a RBF used, the Polyharmonic Splines
(PHS) with appropriate polynomial augmentation stand out due to the fact that
they possess no shape parameter, eliminating all the hassle that comes with
having to find its optimal value. PHS RBF-FD has been studied extensively
and proved to work well in several different contexts [1,2,6–8]. Unlike in the
case of RBFs with a shape parameter, where the approximation order is deter-
mined by the stencil size [3], in PHS RBF-FD it is determined by the degree of
the monomials included in the augmentation [1]. Despite that, the choice of an
appropriate stencil size can have a substantional impact on the accuracy. More
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Mikyška et al. (Eds.): ICCS 2023, LNCS 14076, pp. 515–522, 2023.
https://doi.org/10.1007/978-3-031-36027-5_40
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precisely, the accuracy of the method displays an oscillatory behaviour under
increasing stencil size.

In the remainder of the paper, we present this observation and our findings.
Ideally we would like to be able to predict the stencil sizes that correspond to the
accuracy minima or at least provide some indicator on whether a given stencil
size is near the minimum.

The following section describes our problem setup along with the numerical
solution procedure and in Sect. 3 our results are discussed.

2 Problem Setup

Our analyses are performed on the case of the Poisson equation

∇2u(x) = f(x), (1)

where the domain is a disc Ω = {x ∈ R
2 : ‖x − (0.5, 0.5)‖ ≤ 0.5}. We choose

the function f(x) such, that the problem given by Eq. (1) has a known analytic
solution. Concretely, we choose

u(x, y) = sin(πx) sin(πy), (2)

f(x, y) = − 2π2 sin(πx) sin(πy) (3)

with the Dirichlet boundary conditions given by a restriction of u(x) to the
boundary ∂Ω.

We discretise the domain with the discretisation distance h = 0.01, first
discretising the boundary and then the interior using the algorithm proposed in
[4]. The Laplacian is then discretised using the RBF-FD algorithm as described
in [5], where we choose the radial cubics as our PHS (φ(r) = r3) augmented
with monomials up to degree m = 3, inclusive. This requires us to associate to
each discretisation point xi its stencil, which we take to consist of its n nearest
neighbours. We can now convert the PDE (1) into a sparse linear system, which
we then solve to obtain an approximate solution û(x). The source code is readily
available in our git repository1.

The chosen analytical solution u(x) is displayed in Fig. 1, which additionally
serves as a visual representation of how the domain is discretised.

Having both the analytical and approximate solutions, we will be interested
in the approximation error. It will turn out to be useful to consider the signed
pointwise errors of both the solution and the Laplacian approximation:

e±
poiss(xi) = ûi − ui, (4)

e±
lap(xi) = ∇̃2ui − fi, (5)

where ∇̃2 is the discrete approximation of the Laplacian and we have introduced
the notation ui = u(xi). The “poiss” and “lap” subscripts may be omitted in
the text when referring to both errors at once.
1 https://gitlab.com/e62Lab/public/2023 cp iccs stencil size effect.
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Fig. 1. The analytical solution to the considered Poisson problem.

As a quantitative measure of the approximation quality, we will also look at
the average/max absolute value error:

emax
poiss = max

xi∈Ω̊
|e±

poiss(xi)|, (6)

eavgpoiss =
1

Nint

∑

xi∈Ω̊

|e±
poiss(xi)| (7)

and analogously for emax
lap and eavglap . Nint is the number of discretisation points

inside the domain interior Ω̊.
In the next section we will calculate the approximation error for various

stencil sizes n and further investigate its (non-trivial) behaviour.
It is worth noting that the setup considered is almost as simple as it can be.

The fact that we have decided not to consider a more complicated problem is
intentional - there is no need to complicate the analysis by considering a more
complex problem if the investigated phenomena already appears in a simpler
one. This reinforces the idea that such behaviour arises from the properties of
the methods used and not from the complexity of the problem itself.

3 Results

In Fig. 2 we see that emax
poiss(n) oscillates with several local minima (at sten-

cil sizes n = 28, 46) and maxima (stencil sizes n = 17, 46). The dependence
emax
poiss(n) seems to mostly resemble a smooth function. This is even more evident

in eavgpoiss(n). The errors of the Laplacian are also plotted and we can observe
that eavglap (n) has local minima and maxima at same stencil sizes. Such regularity
implies that the existence of the minima in the error is not merely a coincidence,
but a consequence of a certain mechanism that could be explained. Further
understanding of this mechanism would be beneficial, as it could potentially
allow us to predict the location of these local minima a priori. Considering that
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the error difference between the neighbouring local maxima and minima can be
over an order of magnitude apart this could greatly increase the accuracy of the
method without having to increase the order of the augmentation or the discreti-
sation density. Note that the behaviour of emax

lap stands out as it is much more
irregular. This implies that in order to explain the observed oscillations, we have
to consider the collective behaviour of multiple points. This will be confirmed
later on, when we consider the error’s spatial dependence.

An immediate idea is that the choice of a sparse solver employed at the end
of the solution procedure is responsible for the observed behaviour. We have
eliminated this possibility by repeating the analysis with both the SparseLU
and BiCGSTAB solvers, where no difference has been observed. The next idea
we explore is the possibility of the discretisation being too coarse. Figure 3 shows
that under discretisation refinement emax

poiss(n) maintains the same shape and is
just shifted vertically towards a lower error. The latter shift is expected, as we
are dealing with a convergent method, for which the solution error behaves as
e ∝ hp as h → 0, where p is the order of the method. We also show emax

poiss(h)
in a log-log scale for some different stencil sizes. It can be seen that the slopes
and therefore the orders p generally do not change with the stencil size and that
the observed oscillations mainly affect the proportionality constant in e ∝ hp.
The stencil dependence of the error proportionality constant has already been
observed in similar methods [3,9].

Fig. 2. Dependence of the approximation errors on the stencil size n.

Next we check if boundary stencils are responsible for the observed behaviour
as it is known that they can be problematic due to their one-sideness [2]. In
Fig. 4 we have split our domain into two regions - the nodes near the boundary
{xi ∈ Ω : ‖xi − (0.5, 0.5)‖ > 0.4} are coloured red, while the nodes far from
the boundary {xi ∈ Ω : ‖xi − (0.5, 0.5)‖ ≤ 0.4} are black. We can see that the
dependence of emax

poiss(n) marginally changes if we keep the stencil size near the
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Fig. 3. Behaviour of the approximation errors under a refinement of the discretisation.

boundary fixed at n = 28 (corresponding to one of the previously mentioned
minima), while only changing the stencil sizes of the remaining nodes. This
shows that the observed phenomena is not a consequence of the particularly
problematic boundary stencils.

Fig. 4. The seperation of the domain into two regions is seen on the left, where the
green circles show the radii of the biggest stencils considered (n = 69). The right graph
shows the error dependence when either of the regions is at a fixed stencil size n = 28.
The previous result with no fixed stencil size regions is also shown.

Figure 5 provides some more insight into the mechanism behind the oscillat-
ing error. Here we have plotted the spatial dependence of the signed error e±

poiss

for those stencils that correspond to the marked local extrema. We can observe
that in the maxima, the error has the same sign throughout the whole domain.
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On the other hand, near the values of n that correspond to the local minima
there are parts of the domain that have differing error signs. Concretely, the sign
of e±

poiss is negative for stencil sizes between 17 and 27 inclusive. In the minima
at n = 28 both error signs are present, while for bigger stencil sizes (between 29
and 45 inclusive) the error again has constant sign only this time positive. The
story turns out to repeat on the next minimum.

Fig. 5. Spatial dependence of e±poiss in some local extrema. The colour scale is the same
for all drawn plots.

This connection between the sign of e±
poiss and the minima in emax

poiss(n) moti-
vates us to define a new quantity:

δN±
poiss =

1
Nint

(
|{xi ∈ Ω̊ : e±

poiss(xi) > 0}| − |{xi ∈ Ω̊ : e±
poiss(xi) < 0}|

)
(8)

and analogously for δN±
lap. Simply put, the quantity δN±

poiss is proportional to
the difference between the number of nodes with positively and negatively signed
error. Assigning values of ±1 to positive/negative errors respectively, this quan-
tity can be roughly interpreted as the average sign of the error. It should hold
that |δN±

poiss| is approximately equal to 1 near the maxima and lowers in mag-
nitude as we approach the minima. Figure 6 confirms this intuition - δN±

poiss(n)
changes its values between ±1 very abruptly only near the n that correspond to
the minima of emax

poiss(n). A similar conclusion can be made for δN±
lap, which acts

as a sort of “smoothed out” version of δN±
poiss(n).

At a first glance, N±
lap seems like a good candidate for an error indicator -

it has a well-behaved dependence on n, approaches ±1 as we get closer to the
error maxima and has a root near the error minima. The major downside that
completely eliminates its applicability in the current state is the fact that we
need access to the analytical solution to be able to compute it.
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Fig. 6. The quantities δN±(n) along with the spatial profiles of the signs of e± for
some chosen stencil sizes. For convenience, δN± = 0 is marked with an orange line.

4 Conclusions

Our study started with a simple observation - when solving a Poisson problem
with PHS RBF-FD, the approximation accuracy depends on the stencil size n
in a non-trivial manner. In particular, there exist certain stencil sizes where
the method is especially accurate. A priori knowledge of these stencil sizes could
decrease the solution error without any additional effort and is therefore strongly
desirable. We have made a small step towards understanding this phenomena,
eliminating various common numerical issues as the cause. Looking at the spatial
dependence of the signed solution error, we have noticed that in the stencil sizes
corresponding to the local error minima, the signed solution error is not strictly
positive or negative. This is unlike the generic stencil sizes, where the error has
the same sign throughout the domain. Motivated by this observation, we have
introduced a quantity that is roughly the average sign of the pointwise Laplace
operator errors and appears to have a root only near the stencils corresponding
to the local error minima.

The research presented is a step towards defining a more practically useful
indicator, which would reveal the most accurate stencil sizes even without having
access to the analytical solution and is a part of our ongoing research. Additional
future work includes more rigorous theoretical explanations for the observations
presented. Further experimental investigations should also be made, particularly
to what extent our observations carry over to different problem setups - other
differential equations and domain shapes.
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2.3 Stability Analysis of RBF-FD and WLS-Based Local Strong-
Form Meshless Methods on Scattered Nodes

To further improve our understanding of RBF-FD and WLS approximations, we study
their stability on scattered nodes. Such study (i) provides insights into the computational
effectiveness of the two widely used approximation methods with the ability to operate on
scattered nodes, encompassing aspects ranging from the accuracy of the numerical solution
to the stability of the solution procedure and, thus, (ii) allows us to conclude which of the
two methods is more appropriately used in the hp-adaptive solution procedure.

Contributions.
This section represents contribution C3. We demonstrate that the high-order RBF-FD
approximations are generally more stable and more accurate. This observation makes the
RBF-FD approximation method a better candidate for the development of hp-adaptive
solution procedure where stability of the high-order approximation is crucial.

Addressed hypotheses.
On a two-dimensional Poisson problem, we demonstrate the superior stability of RBF-FD
approximation method, thus, confirming hypothesis H2. Additionally, as both methods
demonstrate stable high-order approximations, we also confirm hypothesis H3.

Publications included in this section:

• M. Jančič and G. Kosec, “Stability analysis of RBF-FD and WLS based local
strong form meshless methods on scattered nodes,” in 2022 45th Jubilee Inter-
national Convention on Information, Communication and Electronic Technol-
ogy (MIPRO), 2022, pp. 275–280. doi: 10.23919/MIPRO55190.2022.9803334

Regarding my contribution: I made a literature overview of the topic, planned and
performed the experiments and jointly prepared the manuscript with co-authors.
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Abstract – The popularity of local meshless methods in
the field of numerical simulations has increased greatly in
recent years. This is mainly due to the fact that they can
operate on scattered nodes and that they allow a direct con-
trol over the approximation order and basis functions. In
this paper we analyse two popular variants of local strong
form meshless methods, namely the radial basis function-
generated finite differences (RBF-FD) using polyharmonic
splines (PHS) augmented with monomials, and the weighted
least squares (WLS) approach using only monomials. Our
analysis focuses on the accuracy and stability of the numeri-
cal solution computed on scattered nodes in a two- and three-
dimensional domain. We show that while the WLS variant
is a better choice when lower order approximations are suf-
ficient, the RBF-FD variant exhibits a more stable behavior
and a higher accuracy of the numerical solution for higher
order approximations, but at the cost of higher computa-
tional complexity.

Keywords – meshless; WLS; RBF-FD; stability; scattered
nodes

I. INTRODUCTION

Computational science has become an important as-
pect of technological advancement in the fields of science
and engineering. Thanks to the unprecedented computing
power at our disposal, many real-life problems are being
numerically treated to deepen our understanding of a phe-
nomenon under consideration.

In the field of numerical simulations, meshless meth-
ods are becoming increasingly popular with recent uses
in the fields of fluid mechanics [1], linear elasticity [2],
contact problems [3], advection-dominated problems [4]
and even in financial sector [5]. Historically, mesh-free
methods were introduced in the 1970s with the smoothed
particle hydrodynamics (SPH) [6, 7] and then followed by
several generalizations of the Finite Difference Method
(FDM), e.g. the Finite Point Method [8], the General-
ized Finite Difference Method [9] and the Radial Basis
Function-Generated Finite Differences (RBF-FD) [10].
Nowadays, a lot of research is also devoted to reducing
the computational time by employing the advantages of
modern computer architecture [11, 12].

The ability of meshless methods to operate on scat-
tered nodes makes them very attractive in many real-life

cases, where the domain shapes are often non-trivial. This
is mainly because node positioning is easier than mesh
generation (required by the mesh-based methods). Sev-
eral algorithms for node positioning have been proposed
to the meshless community. Some even support variable
node density distributions [13] and employing paralleliza-
tion [14] to reduce computational time. Another attrac-
tive feature of meshless methods is that the linear differ-
ential operator approximation allows a direct control over
the order of the approximation method, as demonstrated
in [15, 16], which can effectively be used to increase sta-
bility, as will be shown in this work.

With many proposed meshless variants it is often not
clear which is the most optimal in terms of numerical
stability. Therefore, the aim of this paper is to compare
the two commonly used variants, namely the WLS with
monomials, also known as diffuse approximation method,
and the RBF-FD variant with polyharmonic splines (PHS)
augmented with monomials. The stability of the two
methods is evaluated by solving a Poisson problem in two-
and three-dimensional domain for lower and higher order
approximations.

The rest of the paper is organized as follows: In Sec-
tion II both WLS and RBF-FD approximation methods
are presented, in Section III our case study is presented, in
Section IV the results are shown and commented. Finally,
in Section V conclusions and our findings are given.

II. MESHLESS METHODS

In meshless methods, a linear differential operator L
at each node xc from the domain space Ω is approximated
over a set of nearby nodes

L̂u(xc) ≈
n∑

i=1

wiu(xi) = wLu (1)

for any function u, n nearby nodes also known as stencil
nodes and weights wi, that are obtained by enforcing the
equality of the equation (1) for a given set of s basis func-
tions {pj}sj=1. The most common choice is to declare the
nearest n nodes as stencil, but some authors reported spe-
cial stencil selection algorithms that increase the overall
stability of the approximation [17, 18].

The approximation (1) is general in the sense that it
holds for any linear differential operator L for any support
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size n and any type or number s of chosen basis functions
p. As long as the number of basis functions is equal to the
number of support nodes (s = n), the formulation of (1)
yields a quadratic system of equationsp1(x1) · · · p1(xn)

...
. . .

...
ps(x1) · · · ps(xn)


︸ ︷︷ ︸

P

w1

...
wn


︸ ︷︷ ︸

w

=

(Lp1)(xc)
...

(Lps)(xc)


︸ ︷︷ ︸

l

(2)

as is the case with the so-called local collocation meth-
ods [19]. However, larger support sizes are often used,
resulting in an overdetermined system of equations. In
such cases, the linear system is usually treated as a mini-
mization of the weighted least squares (WLS) norm [20]

∥e∥2,w =

√√√√ n∑
i=1

w2(û(xi)− ui)2 =

=

√√√√ 2∑
i=1

(wei)2.

(3)

Common basis functions include: Multiquadrics,
Gaussians, Radial Basis Functions (RBFs) and Monomi-
als. In this paper we focus on two different types of ba-
sis functions, i.e., monomials and polyharmonic splines
(PHS) augmented with monomials, resulting in two vari-
ants of meshless methods also known as the WLS ap-
proach and the RBF-FD variant respectively. While WLS
approximation using a set {pj}sj=1 monomials up to and
including degree m as basis functions is fully defined
above, the RBF-FD approximation is defined in the fol-
lowing section.

A. Radial Basis Function-Generated Finite Differences

Let us take RBFs φ, such that φ : [0,∞) → R is cen-
tered at the stencil nodes of a central node xc. The matrix
Φ from the linear system (2) is then obtained by evaluat-
ing basis functions

Φij = φ(∥xi − xj∥) (4)

and the vector l is assembled by applying the considered
operator L to the basis functions evaluated at xc, i.e.,

liφ = (Lφ(∥x− xi∥))
∣∣
x=xc

. (5)

We can choose from different types of RBFs. Until
recently, Hardy’s multiquadrics or Gaussians were com-
monly used, but both depend on a shape parameter which
effectively governs the accuracy and stability of the ap-
proximation [21]. To avoid the shape parameter, we use
PHS, defined as

φ(r) =

{
rk, k odd
rk log r, k even

, (6)

where r denotes the Eucledian distance between two
nodes.

However, the use of pure RBFs as basis functions may
lead to stagnation errors [22]. Therefore, in addition to the
RBFs, augmentation with monomials up to and including
degree m is added. This essentially means that we take a
set of polynomials {pj}sj=1 with up to and including de-
gree m with s =

(
m+d
d

)
and in addition to the RBF part of

the approximation, the following exactness constraint for
monomials is enforced

s∑
i=1

wipj(xi) = (Lpj)(xc). (7)

The additional constraints make the approximation
overdetermined, which is treated as a constrained opti-
mization problem [22]. For practical computation, the op-
timal solution can be expressed as a solution of a linear
system [

Φ P

PT 0

] [
w
λ

]
=

[
ℓφ
ℓp

]
, (8)

where P is an n × s matrix of polynomials evaluated at
stencil nodes as is defined in a purely monomial approx-
imation (2), and ℓp is the vector of values assembled by
applying the considered operator L to the polynomials at
xc

lip = (Lpi(x))
∣∣
x=xc

(9)

and λ are Lagrange multipliers.

Finally, the system (8) is solved to obtain weights and
the approximate operator L at xc. Lagrange multipliers
are discarded.

Note that the exactness of (7) ensures the convergence
behavior and also provides direct control over the con-
vergence rate of the RBF-FD variant, since the local ap-
proximation has the same order as the polynomial ba-
sis used [21]. Also notice that the linear system (8) is
larger when RBFs are augmented with monomials com-
pared to when only monomials are used, making the RBF-
FD approximation method computationally more expen-
sive than the WLS approach.

Implementation note
All elements of the solution procedure using meshless

methods used in this paper are implemented in C++ us-
ing an object-oriented approach and a template system
to achieve dimensionality independence. The numerical
library used in this work and developed in-house is the
Medusa library [23].

III. CASE SETUP

Any conclusions drawn from the analysis should not
be specific to any particular domain shape or problem
setup. We therefore choose a simple Poisson problem with
Dirichlet boundary conditions on a d-dimensional sphere.
All observations we make on this simple example should
be understood as fundamental properties of the approxi-
mation method employed and therefore apply to all more
complex domain shapes and problem setups.

In the form of a PDE system, Poisson problem can be
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written as

∇2u(x) = f(x) in Ω, (10)

u(x) =
d∏

i=1

sin(πxi) on ∂Ω (11)

where the right hand side was chosen to be

f(x) = −dπ2
d∏

i=1

sin(πxi) (12)

and, as previously noted, the domain Ω is a d-dimensional
sphere

Ω =
{
r ∈ Rd, ∥r∥ ≤ 1

}
. (13)

Example solution to equations (10)–(12) is shown in Fig-
ure 1.

Figure 1. Example solution to 2D Poisson problem with Dirich-
let boundary conditions on N = 523 scattered nodes.

The closed form solution of the above problem is
u(x) =

∏d
i=1 sin(πxi). Having the closed form solu-

tion allows us to evaluate the accuracy of the numerical
solution û by computing the infinity norm error

e∞ =
∥û− u∥∞
∥u∥∞

, ∥u∥∞ = max
i=1,...,N

|ui|. (14)

The infinity norm was chosen because the authors have
shown in [15] that it measures the lowest convergence
rates and does not involve averaging, unlike the com-
monly chosen 2-norm error.

Numerical results are obtained using the two mesh-
less methods described in Section II, for a given domain
discretization. Firstly, the RBF-FD using PHS radial ba-
sis function φ(r) = r3 and monomial augmentation up
to and including order m ∈ {2, 4, 6} is used, and sec-
ondly, the WLS approach using only monomials up to
and including the same order m is used. After both vari-
ants have been employed, the domain discretization is dis-
carded and discretized again so that the number of nodes
N remains approximately the same, but the positions of

the discretization nodes are different. The same process
is repeated Nruns = 100 times. Note that after every do-
main discretization, the shapes must also be recomputed.
This potentially leads to a different accuracy of the numer-
ical solution and allows us to observe the stability of the
numerical methods.

The aim of this research is to determine which of
the two approximation methods is more prone to a non-
optimal discretization of the domain. For that, we intro-
duce a normalized infinity norm error

emax
∞ − emin

∞
emedian
∞

(15)

effectively describing the largest norm difference identi-
fied within the Nruns = 100 runs, divided by the median
value.

IV. RESULTS

In this section results are presented. All compu-
tations were performed with parallel execution on a
computer with AMD Threadripper 3990X proces-
sor and 8x32GB DDR4 memory. The code1 was com-
piled using g++ (GCC) 9.3.0 for Linux with
-O3 -DNDEBUG -fopenmp flags.

In all of the following figures, the blue colour is used
to indicate the order of the approximation method m = 2,
red for m = 4 and green for m = 6. In the following sub-
sections, the results for each dimension are presented sep-
arately, while our findings are summarized and presented
as part of our conclusions in Section V. Only d = {2, 3}
dimensional domains are studied, since scattered nodes do
not make sense in d = 1 dimensional problems and higher
dimensional spaces d > 3 are beyond the scope of this pa-
per.

A. The effect of stencil size
This section presents the effect of stencil size on accu-

racy of the numerical solution and on the stability of the
meshless variant. A scan over a range of stencil sizes n
is made and shown in Figure 2. Numerical solution has
been obtained Nruns = 100 times at any given stencil
size n, and with new domain discretization after every
run keeping the total node count N ≈ 40600. We can
clearly observe that the error can be significantly higher
if the support sizes are not sufficiently large, independent
of the meshless variant. However, beyond that point, the
dependency of the accuracy and the stability of the nu-
merical solution on the stencil size is practically negligi-
ble. The tipping point for both approximation methods is
in the neighborhood of recommendations made by Bay-
ona [21] for the RBF-FD, that is

n = 2

(
m+ d

d

)
. (16)

1The source code is available at: https://gitlab.com/e62Lab/public/cp-2022-mipro-engine_stability under tag v1.2.
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Figure 2. Support size scan in two-dimensional domain with ap-
proximately N ≈ 40600 nodes.

Although all of the above conclusions were made on
a 2-dimensional case, similar observations can be made
in a three-dimensional domain, shown in Figure 3. How-
ever, in a three-dimensional case, a smaller number of dis-
cretization points N ≈ 28100 has been used due to the
fact that the support sizes are generally larger (see equa-
tion (16)), making the computational times longer.

Figure 3. Support size scan in three-dimensional domain with
approximately N ≈ 28100 nodes.

B. Convergence rates
Considering the observations from the previous sub-

section, we continue our analysis by limiting ourselves to
a single support size as defined in equation (16).

Convergence rates in the case of a two-dimensional
domain are shown in Figure 4. The fact that the errors
eventually diverge is a consequence of the errors in finite
precision arithmetic, as previously observed by Flyer [22].
As expected, the order of magnitude of the infinity norm
error is the same for both approximation methods, but
small differences can be observed. First, the accuracy

achieved with the higher order (m = 6) approximation is
significantly better with the RBF-FD than with the WLS
approach, and second, the spread around a median error
value is significantly smaller for the RBF-FD.

Figure 4. Convergence rates in two-dimensional domain.

The spread observed after successive Nruns = 100
runs is further examined in Figure 5, where the normal-
ized spread computed as defined in (15) is evaluated and
shown. We can see that the normalized spread is on aver-
age approximately constant, i.e., independent of the num-
ber of discretization points and approximately equal to 1
for a RBF-FD variant. We also find that the spread is about
two orders of magnitude larger and unpredictable for the
WLS approximation - with one exception, that is the low
order WLS approximation (m = 2), which clearly outper-
forms the RBF-FD variant in terms of stability and preci-
sion. In general, in two-dimensional domains, the RBF-
FD variant is more stable, achieving better accuracy for
higher order approximations, while lower order approxi-
mations are more stable and computationally cheaper to
obtain with the WLS variant.

Figure 5. Normalized spread size around median value in two-
dimensional domain.
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Furthermore, convergence rates for a three-
dimensional case are shown in Figure 6. At first glance,
we observe some similarities with the two-dimensional
case in Figure 4: Firstly, the errors are of the same order
of magnitude for both meshless variants, and secondly, the
spread size after successive Nruns = 100 runs is again in
favour of the RBF-FD approximation method. More im-
portantly, for the high order WLS approximation (m = 6)
and smaller number of discretization nodes N ≈ 103, the
infinity error norm is of the order of 101. This essentially
means that the WLS variant did not converge well. This
is an important observation when studying stability, as we
do not observe such a case in the results obtained with the
RBF-FD variant.

Figure 6. Convergence rates in three-dimensional domain.

Figure 7. Normalized spread size around median value in three-
dimensional domain.

Stability in a three-dimensional space is further stud-
ied in Figure 7. Similarly to the two-dimensional case in
Figure 5, we find that the RBF-FD variant is substantially
more stable than the WLS variant, especially for higher
order approximations (m > 2). We also find that the
amount of spread is slowly decreasing with the number

of discretization points N which was not observed in the
two-dimensional case. This phenomenon is clearly seen
for the RBF-FD approximations and for lower order WLS
approximations (m = 2). The low order approximations
(m = 2) again appear to be in favour of the WLS mesh-
less variant in terms of stability and computational com-
plexity, although in some cases the normalized spread can
be larger than that obtained by the RBF-FD (note the two
peaks in the normalized spread for the low order WLS ap-
proximation in Figure 7). However, the higher order ap-
proximations are significantly more stable when obtained
with the RBF-FD variant.

V. CONCLUSIONS

In this paper, we compare the stability of two vari-
ants of meshless methods. We study solutions obtained
with RBF-FD using polyharmonic splines augmented
with monomials and with WLS approximation using only
monomials as basis functions. Stability is assessed by
solving a two- and three-dimensional Poisson problem
with a tractable solution that allows us to evaluate the nu-
merical solution in terms of the infinity norm error.

We observe the effect of large enough stencil sizes has
a negligible effect on the accuracy of the numerical solu-
tion and stability of the meshless variant. Additionally we
show that in terms of stability, the RBF-FD variant can be
several orders of magnitude better making it more prone
to a non optimal domain discretization. This is particu-
larly evident for the higher order approximations (m > 2),
while the lower order approximations (m = 2) are bet-
ter and computationally cheaper to obtain using the WLS
variant of meshless methods. We also find that the ac-
curacy of the numerical solution obtained with a higher
order approximation method can be significantly better
when using RBF-FD than when using WLS.

Further research is required to provide more accu-
rate and descriptive guidelines as to which approximation
method is most appropriate in particular cases. Although
we provide some comments on the effect of stencil selec-
tion, we believe this aspect is in need of a more detailed
study to make the methods not only stable but also com-
putationally effective.

According to our observations, RBF-FD variant is best
used for problems that require a higher order approxima-
tion, while lower order approximations return better and
faster results with WLS variant.
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[5] Slobodan Milovanović and Lina von Sydow. Radial ba-
sis function generated finite differences for option pricing
problems. Computers & Mathematics with Applications,
75(4):1462–1481, 2018.

[6] Leon B Lucy. A numerical approach to the testing of the
fission hypothesis. The astronomical journal, 82:1013–
1024, 1977.

[7] Robert A Gingold and Joseph J Monaghan. Smoothed
particle hydrodynamics: theory and application to non-
spherical stars. Monthly notices of the royal astronomical
society, 181(3):375–389, 1977.

[8] Eugenio Oñate, Franco Perazzo, and J Miquel. A finite
point method for elasticity problems. Computers & Struc-
tures, 79(22-25):2151–2163, 2001.

[9] L Gavete, ML Gavete, and JJ1046 Benito. Improvements
of generalized finite difference method and comparison
with other meshless method. Applied Mathematical Mod-
elling, 27(10):831–847, 2003.

[10] AI Tolstykh and DA Shirobokov. On using radial basis
functions in a “finite difference mode” with applications to
elasticity problems. Computational Mechanics, 33(1):68–
79, 2003.

[11] Matjaž Depolli and Roman Trobec. Computational effi-
ciency of linear system construction for MLPG method on
a multicore computer. In 2019 42nd International Con-
vention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), pages 200–
205, 2019.

[12] Roman Trobec and Matjaž Depolli. A k-d tree based
partitioning of computational domains for efficient paral-
lel computing. In 2021 44th International Convention on

Information, Communication and Electronic Technology
(MIPRO), pages 284–290, 2021.

[13] Jure Slak and Gregor Kosec. On generation of node distri-
butions for meshless pde discretizations. SIAM journal on
scientific computing, 41(5):A3202–A3229, 2019.

[14] Matjaž Depolli, Jure Slak, and Gregor Kosec. Parallel do-
main discretization algorithm for rbf-fd and other meshless
numerical methods for solving pdes, 2022.
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Chapter 3

hp-Adaptive Solution Procedure

Consider a problem where the solution is known to vary smoothly in some regions of
the domain, but rapidly in others. A traditional numerical method would require a fine
discretization throughout the entire domain, even in the regions where the solution is
smoother. This would result in an unnecessarily large number of computational nodes
and correspondingly large computational complexity. An adaptive solution procedure, on
the other hand, starts with a coarse discretization and then, based on error indication or
error estimation, iteratively refines the discretization in regions where the accuracy of the
numerical solution is insufficient and coarsens it in regions where the accuracy is high. This
allows the numerical method to achieve the desired accuracy while using a smaller number
of discretization nodes – focusing the available computational resources on the parts of the
domain that require the most accuracy.

The adaptive technique controlling the spatial discretization described in this simpli-
fied example is referred to as the h-adaptivity, while p-adaptivity spatially controls the
approximation order for the same purpose. The two can be combined to form a so-called
hp-adaptive solution procedure.

This chapter presents the key components of a strong-form meshless hp-adaptive solu-
tion procedure, which iteratively adjust both the local discretization and the approximation
order in regions with large error indicator values. We discuss the two remaining compo-
nents needed for a complete hp-adaptive solution procedure (presented in Section 3.3): the
benefits of spatially-varying the approximation order in Section 3.1, and the development of
an original error indicator that eliminates the need for human intervention in the solution
procedure in Section 3.2.

3.1 p-refined RBF-FD Solution of a Poisson Problem

The traditional approach to numerical treatment of PDEs involves the use of a fixed ap-
proximation order throughout the entire computational domain. However, the underlying
phenomena may exhibit spatial variations in its complexity or require different levels of
accuracy in different domain regions. In such cases, a constant approximation order across
the domain can lead to a computationally ineffective solution procedure, as it results in
overuse of computational resources in simpler regions or a lack of precision in more complex
domain regions.

To address this issue and achieve a higher level of efficient PDE-solving procedure, some
researchers have turned their attention towards spatially-varying approximation order [82].
This technique enables the adaptation of approximation orders based on the spatial charac-
teristics of the problem – employing high-order approximations where needed and low-order
approximations where the accuracy of the numerical solution is satisfying.
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In the following publication, a simple Poisson problem is used to demonstrate the
advantages of p-refined solutions. For demonstration purposes, the spatial distribution of
the approximation order is defined a priori, i.e. without the use of error indicators or error
estimators.

Contributions.
This section represents contribution C4. We demonstrate that a well-thought-out spatial
distribution of approximation orders can be beneficial in terms of stability and computa-
tional complexity of the solution procedure and accuracy of the numerical solution.

Addressed hypotheses.
In the following publication, we demonstrate that the RBF-FD approximation method
can be successfully employed with spatially-variable approximation orders, thus, finally
confirming hypothesis H3. Moreover, on a simple two-dimensional peak problem we
demonstrate that a non-trivial spatial distribution of approximation orders can improve
the accuracy of the numerical solution with negligible increase in the total computational
complexity of the solution procedure due to larger stencil size requirement of high-order
approximations. The latter observation confirms hypotheses H1 and H5.

Publications included in this section:

• M. Jančič, J. Slak, and G. Kosec, “p-refined RBF-FD solution of a poisson
problem,” in 2021 6th International Conference on Smart and Sustainable
Technologies (SpliTech), 2021, pp. 01–06. doi: 10.23919/SpliTech52315.
2021.9566401

Regarding my contribution: I made a literature overview of the topic, planned and
performed the experiments and jointly prepared the manuscript with co-authors.

https://doi.org/10.23919/SpliTech52315.2021.9566401
https://doi.org/10.23919/SpliTech52315.2021.9566401
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“Jožef Stefan” Institute

Parallel and Distributed Systems Laboratory,
Jamova cesta 39, 1000 Ljubljana, Slovenia

Email: gregor.kosec@ijs.si

Abstract—Local meshless methods obtain higher convergence
rates when RBF approximations are augmented with monomials
up to a given order. If the order of the approximation method is
spatially variable, the numerical solution is said to be p-refined.
In this work, we employ RBF-FD approximation method with
polyharmonic splines augmented with monomials and study the
numerical properties of p-refined solutions, such as convergence
orders and execution time. To fully exploit the refinement
advantages, the numerical performance is studied on a Poisson
problem with a strong source within the domain.

Index Terms—Meshless methods, p-refinement, RBF-FD, high
order method

I. INTRODUCTION

Meshless methods are becoming a strong alternative to mesh
based methods, when numerical treatment of partial differ-
ential equations is required. A strong advantage of meshless
methods is that they can operate on scattered nodes, contrary
to mesh-based methods, that need a computationally expensive
mesh to operate. Many different meshless methods have been
proposed so far, e.g. meshless Element Free Galerkin [1], the
Local Petrov-Galerkin [2], h-p cloud method [3] and others. In
this paper we use a method that generalizes the traditional Fi-
nite Difference Method, called radial-basis-function-generated
finite differences (RBF-FD). From a historical point of view,
RBF-FD was first mentioned by Tolstykh [4] in 2003 and has
since been successfully used in a vast range of problems, e.g.
convection-diffusion problems [5], fluid flow problems [6],
contact problems [7], scattering [8], dynamic thermal rating
of power lines [9], etc.

The RBF-FD use RBFs to approximate the linear dif-
ferential operators [10]. Most of the RBFs, like Hardy’s
multiquadrics or Gaussians, include shape parameter [11] that
directly affects the stability of the approximation and accuracy

The authors would like to acknowledge the financial support of the ARRS
research core funding No. P2-0095 and the The World Federation of Scientists
program.

of the solution [12]. To avoid shape parameter problems alto-
gether, Polyharmonic splines (PHS) have been proposed [13],
however, PHS alone do not guarantee convergent behavior.
Therefore, RBFs are augmented with monomials up to given
order [13]. The RBF part of the approximation takes care of
the potential ill-conditioning [14], while the polynomial part
not only ensures convergent behavior but also allows direct
control over the convergence rate.

It has already been proven that having the control over
the convergence rate is beneficial, when a compromise be-
tween the accuracy of the solution and computational time is
needed [15]. However, in this paper, we exploit the ability
to control the order of the approximation method to employ
spatial variability of the approximating method order. Such so-
lution procedure refinement is also known as p-refinement [16]
and is a well known refinement procedure in the scope of
finite element methods [17], where it also forms the basis of
the highly successful hp-adaptive methods. In this paper, con-
vergence rates and computational times of p-refined solutions
are studied. It is shown that spatially variable order of the
approximation method can notably reduce the computational
time and improve the convergence rate at the same time.

The rest of the paper is organized as follows: In section II
the main steps of solution procedure are described, in sec-
tion III, the numerical example used to test the numerical
performance of p-refinement is presented, in section IV, results
are presented and finally, in section V conclusions are given
and future work is proposed.

II. NUMERICAL APPROXIMATION

The solution procedure can be roughly divided into three
steps. Using a dedicated node positioning algorithm the do-
main is first discretized. Afterwards, the differential operators
are approximated in each node, resulting in stencil weights.
Finally, the system of PDEs is discretized and, therefore,
transformed to a system of linear equations. The system is
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Fig. 1. An example of circular domain populated with scattered nodes. Circles
represent the nodes in the interior of the domain while the crosses are on its
boundary.

solved and its solution stands for a numerical solution uh of
the considered system of PDEs.

A. Domain discretization

In the first applications of meshless methods, researchers
used existing mesh generators and simply discarded the
connectivity information to obtain the nodes [18]. However,
such procedure is computationally wasteful and conceptually
wrong. Additionally, it can also be problematic, since some
authors reported that it failed to produce nodal distributions
of sufficient quality [19].

Researchers therefore soon started proposing dedicated node
positioning algorithms. In this paper, a dimension-independent
node generation algorithm [20] is used to populate the domain
with scattered nodes. The algorithm ensures a quasi-uniform
internodal distance h as seen in figure 1.

B. Approximation of partial differential operators

The behavior of a numerical method for solving systems of
PDEs is defined by the approximation of partial differential
operators. In the scope of meshless methods, the approxima-
tion is done as follows: Consider an operator L at a point xc.
The approximation of L is sought using the ansatz

(Lu)(xc) ≈
n∑
i=1

wiu(xi), (1)

where wi are the stencil weights, n is the stencil size or support
size, and u is the unknown function. To simplify the writing,
the weights and function values are assembled into vectors
wL(xc) and u respectively. This notation allows us rewrite

the operator approximation (1) in the form of a dot product
between the two vectors

(Lu)(xc) ≈ wL(xc)
Tu. (2)

While the field values u from equation (2) are considered
as unknown, the weights wL(xc) need to be determined. To
determine the weights, equality in equation (2) is enforced for
a given set of basis functions. In this paper we use RBFs,
denoted as φj . The radially symmetric RBFS, centered at
stencil nodes xi, can be written in the form

φj(x) = φ(‖x− xj‖), (3)

for a radial function φ. Each RBF corresponds to one linear
equation

n∑
i=1

wiφj(xi) = (Lφj)(xc) (4)

with unknown weights wi and index i running over all support
nodes. Assembling these n equations into matrix form, we
obtain a system of linear equationsφ(‖x1 − x1‖) · · · φ(‖xn − x1‖)

...
. . .

...
φ(‖x1 − xn‖) · · · φ(‖xn − xn‖)


w1

...
wn

 =

lφ,1...
lφ,n


(5)

for
lφ,j = (Lφ(‖x− xj‖))|x=xc

. (6)

The system (5) is often compactly written as

Aw = lφ, (7)

where A is symmetric and for some basis functions positive
definite [21].

There are many different choices for RBFs. However, com-
monly used Hardy’s multiquadrics or Gaussians both depend
on the shape parameter that directly affects the stability and
accuracy of the approximation [12]. To avoid shape parameters
entirely, Polyharmonic splines (PHS) are used, defined as

φ(r) =

{
rk, k odd
rk log r, k even

, (8)

where r denotes the Euclidean distance.
Note that using the PHS alone does not guarantee the con-

vergence of local approximations from equation (5). Therefore,
the approximation is additionally augmented with monomials
to omit the problems [13], which is done as follows. Let
p1, . . . , ps be polynomials for which exactness of ansatz (2) is
again enforced. Monomials are often chosen up to a certain or-
der m, resulting in s =

(
m+d
m

)
monomials for a d-dimensional

space.
The additional enforcement is introduced by extending the

system (5) with the new conditions[
A P

P T 0

] [
w
λ

]
=

[
`φ
`p

]
. (9)
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Here

P =

p1(x1) · · · ps(x1)
...

. . .
...

p1(xn) · · · ps(xn)

 (10)

is a n × s matrix of polynomials evaluated at stencil nodes
and

`p =

(Lp1)|x=xc

...
(Lps)|x=xc

 (11)

is the vector of values assembled by applying the considered
operator L to the polynomials at xc. Weights obtained by solv-
ing (9) are taken as approximations of L at xc while additional
unknowns λ, the Lagrange multipliers, are discarded.

The augmentation with monomials not only helps with con-
vergence but also provides direct control over the convergence
rate, since the local approximation of the linear operator has
the same order as the basis used [13], while the RBF part
handles the potential ill-conditioning in purely polynomial
approximations [14].

C. PDE discretization

Consider the boundary value problem with dirichlet bound-
ary condition

Lu = f in Ω, (12)
u = g on ∂Ω. (13)

The domain Ω is discretized with N scattered nodes xi with
quasi-uniform internodal spacing h. Out of N nodes, Ni are
in the interior and Nd on the boundary ∂Ω.

The stencils N (xi) for each node xi are then selected.
Commonly a single stencil constitutes of n closest points,
including the node itself. Choosing the right stencil size
n is far for trivial, however it has been recommended by
Bayona [13] to take at least n = 2

(
m+d
d

)
nodes.

In the next step, linear operator L is approximated at
nodes xi, using the procedure described in section II-B. For
each interior node xi, the equation (Lu)(xi) = f(xi) is
approximated by a linear equation

wL(xi)
Tu = f , (14)

where vectors f and u represent values of function f and un-
knowns u in stencil nodes of xi. Similarly, for each Dirichlet
boundary node xi, we obtain the equation

ui = g(xi). (15)

All Ni + Nd equations are assembled into a linear sparse
system, with approximately Nn nonzero elements. The solu-
tion uh of the system is a desired numerical approximation
of u. Note that using the spatially variable order of the
approximation method can lead to a very different number
of nonzero elements in the linear sparse system.

III. NUMERICAL EXAMPLE

The behavior of the described solution procedure and its
implementation is studied on a Poisson problem with Dirichlet
boundary condition. We aim to demonstrate and analyze the
p-refined solution procedure, where the order of the approxi-
mation method varies throughout the computational nodes in
the domain.

Governing equations are

∇2u(x) = flap(x) in Ω, (16)
u(x) = f(x) on ∂Ω (17)

where the domain Ω is a d = 2 dimensional circle

Ω =

{
x ∈ R2, ‖x‖ ≤ 3

2

}
. (18)

To fully exploit the advantages of p-refinement, the right hand
side f(x) was chosen to have a relatively strong source within
the domain at xs = 1

2
, i.e.

f(x) =
1

25 ‖4x− 2‖2 + 1
. (19)

The Laplacian from f can also be computed as

flap(x) = 3200
25 ‖4x− 2‖2

f(x)3
− 800

d

f(x)2
. (20)

The domain was filled with N scattered nodes ranging from
N = 1093 to N = 978013. The problem was solved using
RBF-FD with PHS augmented with monomials of order m ∈
{2, 4, 6}. Stencils for each node were selected by taking n
closest nodes where n was determined as recommended by
Bayona [13]

n = 2

(
m+ d

d

)
. (21)

To demonstrate the effect of p-refinement any combination
of approximation orders m can be used. Naturally, to increase
the overall convergence rate of the numerical solutions, the
highest approximation order is used where the numerical
solution is expected to have the biggest error, e.g. in the
neighborhood of the strong source at xs. We define two radii
r6 and r4 around source center xs. All computational nodes
within the radius r6, i.e. {xi, ‖xi − xs‖ ≤ r6}, are assigned
with approximation augmented with monomials of degree
m = 6, nodes within the annulus {xi, r6 < ‖xi − xs‖ ≤ r4}
are assigned approximation augmented with monomials of
degree m = 4, while the remaining nodes are assigned
approximation augmented with monomials of degree m = 2.
So the order of the approximation method is spatially variable
and can be compactly written as

m =

6, ‖xi − xs‖ ≤ r6
4, r6 < ‖xi − xs‖ ≤ r4
2, otherwise.

(22)

Authorized licensed use limited to: Institute Jozef Stefan. Downloaded on September 19,2023 at 10:21:08 UTC from IEEE Xplore.  Restrictions apply. 

3.1. p-refined RBF-FD Solution of a Poisson Problem 51



Additionally, three different combinations ci of radii r6 and
r4 have been used in this paper

c1 =

{
r6 = 0, r4 =

1

10

}
, (23)

c2 =

{
r6 =

1

10
, r4 =

1

5

}
and (24)

c3 =

{
r6 =

1

5
, r4 =

2

5

}
. (25)

All three cases of spatially variable order of the approximation
method are also shown in figure 2.

A. Error evaluation

Closed form solution u allows us to compute the accuracy
of numerical solution uh. In this paper, the error is evaluated
in computational nodes with the infinity norm

e∞ =
‖uh − u‖∞
‖u‖∞

, ‖u‖∞ = max
i=1,...,N

(26)

The infinity norm is chosen as it is the strictest, but the
authors also observed the same behavior using 2-norm or 1-
norm.

IV. RESULTS

We compare the convergence rates of unrefined and p-
refined numerical solution uh to the problem from section III.
Finally, we also study the effect of p-refinement on computa-
tional times.

A. Convergence rates

Convergence rates were estimated by computing the slope
of the appropriate data subset. Selected convergence rates are
shown in figure 3. We observe that the numerical solutions
converge for all chosen augmentation orders m ∈ {2, 4, 6}.
The expected convergence rate of O(hm) is, however, not
reached, but that is to be expected due to the strong source
within the computational domain. The convergence curve of
a p-refined solution for combination c2 is also added to the
figure 3. It is clear that the refined solution convergences
at a significantly better convergence rate compared to the
convergence rate at m = 2, regardless of the fact that the
majority of the stencils were still computed using monomials
of order m = 2. This confirms our beliefs that the biggest
contribution to the error comes from the strong source and
that the error can be, to some extent, mitigated by locally
using a higher order method, i.e. p-refinement.

The effect of p-refinement is furthermore studied in figure 4,
where convergence rates of refined solutions for all combi-
nations c of radius values are shown. We observe how the
number of nodes used for higher order approximation affects
the convergence rates. The convergence rate for combination
c3 with the most higher order node stencils, is practically the
same as the convergence rate of unrefined solution with the
highest augmented monomial m = 6, even though m = 6
augmentation has only been applied to roughly 2 % of all
computational nodes and m = 4 to roughly 5 %.
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c1; r6 = 0.0, r4 = 0.1
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m = 6
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Fig. 2. Three different stages of p-refinement used. Squares are used to
mark the nodes where approximation is augmented with monomials of order
m = 6, circles for m = 4 and crosses for m = 2.
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Fig. 3. Convergence rates for different augmentation orders m with respect
to the number of nodes N .
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Fig. 4. Refined convergence rates for different radius values combinations.

B. Computation times

In this section an overview of the total computational times
is provided. All computations were performed on a single core
of a computer with AMD EPYC 7702 64-Core processor
and 512GB of DDR4 memory. Code was compiled using g++
(GCC) 9.3.0 for Linux with -O3 -DNDEBUG flags. The
sparse system is solved using the Pardiso solver on a single
thread.

The total computational times are shown in figure 5, where
the best run out of 5 is selected. The total computational
times of unrefined solutions (dashed lines) increases with the
monomial order m. This is expected, since the higher the
order the larger the required stencil size and consequently
longer computational times. The computational times for all
refined solutions are similar to the unrefined solutions aug-
mented with monomial order m = 2, which is also expected
since the majority (≈ 93 %) of the nodes are assigned with
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e
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Total computation times
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m = 4

m = 6
refined, c1
refined, c2
refined, c3

Fig. 5. Total computational times with respect to the domain size N .

augmentation using monomials of degree m = 2, however,
results show that all refined solutions exhibit much better
convergence rates (see figures 3 and 4). This ultimately means
that employing the p-refinement enabled us to obtain signifi-
cantly better convergence behavior with little to no additional
costs to execution time. Furthermore, refined solution for c3
combination with the largest radius values, measures the same
convergence rate as unrefined with m = 6 (k = −3.97 vs.
k = −3.98 respectively), but the former solution was obtained
approximately two times faster.

V. CONCLUSIONS

A p-refinement procedure the RBF-FD meshless method is
presented, where the order of the local approximation is spa-
tially variable. We employed RBF-FD using PHS augmented
with monomials of different degrees to solve a Poisson prob-
lem with a strong source within the computational domain. It
is shown that p-refinement can improve the convergence rates
at a very small cost to execution time, and much faster, that
using a method with a higher global order of convergence.

However, observations show that the p-refinement has its
limitations. In some cases, specially with local strong sources,
the local description of the considered field is just not sufficient
to provide good local approximations of linear differential
operators. Therefore a plan is to combine the benefits of
p-refinement with spatially variable nodal distributions, to
provide better approximations around critical areas within the
domain. This is also known as hp-refinement, and presents a
major step towards hp-adaptivity.
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[8] J. Slak, B. Stojanovič, and G. Kosec, “High order rbf-fd approximations
with application to a scattering problem,” in 2019 4th International
Conference on Smart and Sustainable Technologies (SpliTech). IEEE,
2019, pp. 1–5.
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3.2 The IMEX (IMplicit-EXplicit) Error Indicator

Error indicators are essential for adaptive solution procedures, because they provide a
way to objectively indicate domain regions with inaccurate numerical solution [74]. Error
indicators, combined with an adaptive procedure, allow us to achieve higher accuracy of
the numerical solution through a non-trivial distribution of discretization resolution and/or
spatial distribution of approximation order, in a fully automated manner.

Contributions.
This section represents contribution C5. We develop an original error indicator easily im-
plemented in the context of meshless methods. The proposed IMEX error indicator makes
use of the implicitly obtained numerical solution and explicit operators (approximated by a
higher order approximation basis) to reconstruct the right-hand side of the governing PDE.
The deviation of the explicit high order reconstruction (f ex

RHS) from the exact right-hand
side (fRHS) corresponds to the error of the implicit solution (uim).

The idea is similar to the one behind the ZZ-type indicators, where the deviation of the
recovered high-order solution from the computed solution characterises the error. As long
as the error in uim is high, the explicit re-evaluation will not correctly solve the governing
PDE. However, as the error in uim decreases, the difference between fRHS and f ex

RHS will
also decrease, assuming that the error is dominated by the inaccuracy of uim and not by
the differential operator approximation.

The performance of the proposed error indicator is demonstrated on a simple two-
dimensional Poisson problem with an exponentially strong peak positioned inside the do-
main to simulate a rapid change in the numerical solution and consequently its accuracy.

Addressed hypotheses.
In the following publication, we demonstrate that a posteriori error indicator can be con-
structed solely on assessment of local high-order operator approximation, thus, confirming
hypothesis H4.

Publications included in this section:

• M. Jančič, F. Strniša, and G. Kosec, “Implicit-explicit error indicator based
on approximation order,” in 2022 7th International Conference on Smart
and Sustainable Technologies (SpliTech), 2022, pp. 01–04. doi: 10.23919/
SpliTech55088.2022.9854342

Regarding my contribution: I made a literature overview of the topic, participated in
planning, executed preliminary analyses and jointly prepared the manuscript with
co-authors.

https://doi.org/10.23919/SpliTech55088.2022.9854342
https://doi.org/10.23919/SpliTech55088.2022.9854342
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Abstract—With the immense computing power at our disposal,
the numerical solution of partial differential equations (PDEs) is
becoming a day-to-day task for modern computational scientists.
However, the complexity of real-life problems is such that
tractable solutions do not exist. This makes it difficult to validate
the numerically obtained solution, so good error estimation is
crucial in such cases. It allows the user to identify problematic
areas in the computational domain that may affect the stability
and accuracy of the numerical method. Such areas can then be
remedied by either h- or p-adaptive procedures. In this paper, we
propose to estimate the error of the numerical solution by solving
the same governing problem implicitly and explicitly, using a
different approximation order in each case. We demonstrate the
newly proposed error indicator on the solution of a synthetic two-
dimensional Poisson problem with tractable solution for easier
validation. We show that the proposed error indicator has good
potential for locating areas of high error.

Index Terms—implicit; explicit; error indicator; meshless;
RBF-FD; Poisson equation

I. INTRODUCTION

In physical modelling, systems of partial differential equa-
tions (PDEs) are used to describe the dynamical properties
of many natural phenomena. Moreover, the solution of such
systems is often of interest to engineers and scientists. How-
ever, due to their complexity, they almost never have analytical
solutions, and need to be treated numerically, leading to
a numerical solution. In general, PDE problems are often
solved using one of the following three methods: the finite
volume method (FVM), the finite element method (FEM)
and the finite difference method (FDM). Recently, however,
a generalised formulation of FDM, the radial basis function-
generated finite differences (RBF-FD) [1] [2], has become
increasingly popular. This is mainly because RBF-FD is a
variant of the mesh-free methods [3], i.e. the method can

The authors would like to acknowledge the financial support of Slovenian
Research Agency (ARRS) in the framework of the research core funding No.
P2-0095, and the research project J2-3048.

operate on scattered nodes, unlike the previously mentioned
mesh-based methods.

In the context of RBF-FD, linear differential operators are
approximated over a set of RBFs augmented with monomials.
Augmentation is necessary to ensure convergent and stable
behaviour of the method [4] [5]. Additionally, it also enables
a direct control over the order of the approximation method, as
it corresponds to the highest order used in the approximation
basis.

Nevertheless, after the numerical solution is obtained, sci-
entists are often confronted with the difficulty of validating it.
For that reason, researchers proposed error indicators [6] [7] to
identify problematic areas with a high error of the numerical
solution. In practise, different adaptive numerical methods are
then applied to these areas [8] ensuring a finer local field
description (h-adaptivity) or higher polynomial degree approx-
imations (p-adaptivity), effectively improving the accuracy of
numerical solution.

In this paper, we present an a posteriori error indicator that
measures the error of an implicit solution. The error indicator
is applied through the meshless RBF-FD method as found
in the Medusa library [9]. In general, the idea is to apply
higher order explicit differential operators approximations to
the implicitly obtained solution and thus indicate the areas
with high error of the numerical solution. In the continuation
of this work, the proposed error indicator will be named IMEX
(implicit-explicit) error indicator.

II. IMEX ERROR INDICATOR

Let there be a partial differential equation of type:

Lu = a, (1)

where L is an arbitrary partial differential operator applied
to u, and equaling the constant a. Such a problem is first
solved implicitly, using a lower-order approximation of L,
L(lo), obtaining the solution u(im) in the process. The u(im) is
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then used to reconstruct a explicitly with the help of higher-
order approximation of L, L(hi), giving a(ex). Finally, a(ex) is
then tested against the analytical a to indicate the error. These
steps can be summarized as follows:

1) compute approximations L(lo) and L(hi);
2) solve L(lo)u = a implicitly, obtain u(im);
3) compute a(ex) = L(hi)u(im);
4) compare a(ex) and a to indicate high error areas.

III. RBF-FD APPROXIMATION OF DIFFERENTIAL
OPERATORS

Since the introduction of meshless methods in the 1970s,
many variants have been proposed. The first mention of RBF-
FD dates from 2000 with the introduction from Tolstykh [1].
Since then, the method has been thoroughly studied and
applied to many real-world problems with recent applications
to fluid flow [10] and plasticity [11] problems.

In the framework of RBF-FD, a linear differential operator
L in the node xc is approximated over a set of n neighbouring
(often called stencil) nodes

L̂u(xc) =
n∑
i=1

wiu(xi) (2)

for an arbitrary function u and weightsw yet to be determined.
The weights w are obtained by constructing a localised RBF
approximation with a given set of radial basis functions (RBFs)
θ centred at the stencil nodes of a central node xc

θ(x) = θ(‖x− xc‖). (3)

The localized intepolation (2) can be written in a linear systemθ(x1) · · · θ(x1)
...

. . .
...

θ(xn) · · · θ(xn)


︸ ︷︷ ︸

Θ

w1

...
wn


︸ ︷︷ ︸

w

=

(Lθ1(x)
∣∣
x=xc

...
(Lθn(x)

∣∣
x=xc


︸ ︷︷ ︸

`θ

. (4)

However, as previously observed by Bayona et al. [4], RBFs
alone do not guarantee convergent behaviour or solvability
of the system. To mitigate these problems, the approximation
basis is extended by a set of s =

(
m+d
d

)
monomials with up

to and including degree m in a d-dimensional domain.
With the additional constraints, the RBF-FD approximation

can be written compactly as[
Θ P
P T 0

] [
w
λ

]
=

[
`θ
`p

]
, (5)

where P is a n× s matrix of monomials evaluated at stencil
points, `p is the vector of values composed by applying the
operator under consideration L to the polynomials at xc, i.e.
`ip = (Lpi(x))

∣∣
x=xc

and λ are Lagrangian multipliers (which
we discard after the solution had been obtained).

IV. EXAMPLE

The IMEX error indicator’s performance is demonstrated on
a synthetic example, which is commonly used when testing
adaptive algorithms in mesh-based methods [12].

The example is the Poisson equation, which is solved in a
2D circular domain Ω with its center at (0, 0), and radius 1:

∇2u = flap(x) in Ω,

du

dn
= fneu(x) on ∂Ω, x ≤ 0,

u = fdir(x) on ∂Ω, x > 0.

(6)

The Neumann, and Dirichlet boundary conditions are defined
through fneu, and fdir, respectively:

fneu(x) = −2α
[
exp

(
−α||x− xs||2

)]
x, (7)

fdir(x) = exp
(
−α||x− xs||2

)
. (8)

From these one can derive the analytical solution of the
Laplacian flap at point x = (x, y):

flap(x) = 4
(
α2||x− xs||2 − α

)
exp

(
−α||x− xs||2

)
. (9)

The source is positioned at xs while α controls the source
strength. n is the boundary normal at x on ∂Ω. xs is
positioned at (0.5, 0.5), and α is set to 1000.

The example was solved on a laptop with Intel Core i7-
8750H CPU, and 16 GB RAM. Results were computed, and
written into a file in about 2 s1.

V. RESULTS AND DISCUSSION

The computational domain is discretized and filled with
scattered nodes using Medusa’s built-in algorithms [9] [13].
This procedure results in a domain discretized with 24882
points. An example solution is shown in Fig. 1. Support
sizes for L(lo), and L(hi) are set to 2

(
m+d
d

)
(following the

recommendations by Bayona et al. [4]), m being the monomial
degree, and d the number of dimensions of the domain. The
system in Eq. (6) is first solved implicitly, with lower order
approximation of differential operators ∇2(lo), and d

dn

(lo)
,

which were obtained with 2nd degree monomials. The solution
for the scalar field u(im) is obtained with Eigen’s BiCGSTAB
solver [14]. To compute the RHS explicitly, a higher order
approximation of the operator ∇2(hi), obtained with 4th degree
monomials, is applied to u(im). The results are then compared
to produce the IMEX error indicator εIMEX :

εIMEX =
∣∣∣∇2(hi)u(im)(x)− flap(x)

∣∣∣ . (10)

For validation purposes, the error of u(im), εan, is also
computed by comparing the implicit to the analytical solution.
The latter is obtained with Eq. (8), and εan is:

εan =
∣∣∣u(im)(x)− fdir(x)

∣∣∣ . (11)

1The source code for the example can be found at: https://gitlab.com/
e62Lab/2022 CP splitech IMEX error indicator poisson eg
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Fig. 1. Domain discretization displaying positions of Neu-
mann, and Dirichlet boundaries, as well as interior nodes.

Fig. 2. An example of the implicit solution.

Fig. 2 is displaying the implicit solution u(im) of Eq. (1),
while εan and εIMEX are plotted in Fig. 3. For better
clarity the implicit solution, εan, and εIMEX are plot-
ted in Fig. 4 along the line y = x; x, y ∈ Ω. As
the solution was obtained on scattered nodes, the source
for the aforementioned line is obtained by Shepard in-
terpolation (Python, ShepardIDWInterpolator from
photutils.utils [15]), sampling each plot line point
from 9 nearest neighbors. Additionally, the same case is solved
with 6th degree monomials used to produce L(hi) for IMEX,

Fig. 3. Comparison plots of εan (above), and εIMEX (below).

with results plotted in Fig. 5.
Comparing Figs. 2, and 3 it is noticeable that the solution’s

error is the biggest around the source at point xs = (0.5, 0.5).
The IMEX error indicator also predicts the biggest error to
be around the same point, as can be seen in Fig. 3. This
is further supported by the graph in Fig. 4. Although the
IMEX error indicator does not follow the actual error, it
successfully identifies the area of the biggest error. Increasing
the monomial degree to compute L(hi) does not noticeably
impact IMEX’s performance, as can be seen by comparing
Fig. 4, and 5. However, increasing the monomial degree results
in a significant compute performance hit in this particular case
(total computation time increased to 4 s, compared to previous
2 s).

VI. CONCLUSIONS

A synthetic example of the Poisson equation was solved
and the IMEX error indicator was tested on it. The error
indicator correctly indicated the area of increased error, which
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Fig. 4. Implicit solution (solution), εan (error), and εIMEX

(IMEX) normalized to their respective maximal values, plotted
along the line y = x; x, y ∈ Ω, L(hi) are computed with 4th

degree monomials.

Fig. 5. Implicit solution (solution), εan (error), and εIMEX

(IMEX) normalized to their respective maximal values, plotted
along the line y = x; x, y ∈ Ω, L(hi) are computed with 6th

degree monomials.

also coincided with the source in the Poisson equation. Re-
sults were produced by increasing the monomial degree of
the explicit approximations by 2 compared to the implicit
counterparts. Further increasing the monomial degree did not
prove beneficial in this specific example.

We show that the proposed error indicator successfully
identifies the areas with high error of the numerical solution.
In the continuation, these findings could be used to adaptively
refine the critical areas and improve the precision of the
numerical solution.
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On the Theoretical Background of IMEX Error Indicator

The presented paper introducing the IMEX error indicator lacks theoretical background,
which is, to a certain extent, mitigated in the following discussion based on the recent work
on the adaptivity of local kernel based methods [116].

The derivation of the error estimation, assumes the local interpolant sm of function f
and given order m is constructed over n stencil nodes as

sm[f ](x) =
n∑

j=1

λj [f ]ϕj(x) +

Mm∑
l=1

γl[f ]πl(x), (3.1)

using a linear combination of (conditionally-) positive definite kernel functions ϕj(x) =

φ(∥x− xj∥) for j = 1, 2, . . . , n, and Mm =
(
m+d
m

)
multivariate polynomial terms π up to

and including degree m in a d-dimensional domain. Coefficient vectors λ and γ are chosen
such that the interpolation conditions sm[f ](xj) = f(xj) are satisfied1 for all j.

Based on the Taylor expansion of f(x) about the point x0, with f having continuous
mixed partial derivatives up to order m+µ+1 — where µ is a positive integer parameter
the meaning of which will be clear later — Reeger [116] provides a mathematical proof
that the point-wise error of interpolant sm[f ] can be expressed as

sm[f ](x)− f(x) =

=

Mm+µ−Mm∑
l=1

1

αMm+l
!
∂αMm+lf(x)

∣∣
x=x0

Em,Mm+l
(x)+

+

(
sm[Rm+µ[f ]](x)−Rm+µ[f ](x)

) (3.2)

with Em,Mm+l
(x) = sm[πm,Mm+l

(x)] − πm,Mm+l
(x) defined as the error in approximating

the polynomial term πm,Mm+l
and remainder terms R behaving as O(hm+µ+1) as h → 0

for typical spacing h within between the stencil nodes used for the construction of the
interpolant sm[f ]. Here, the multi-index notation αl has been used (see [116] and [117] for
clarity concerning the multi-index notation).

In adaptive solution procedures, the goal is to reduce the error of

∥Lsm[f ]− Lf∥ = ∥L(sm[f ]− f)∥ , (3.3)

where
∥Lsm[f ]− Lsm+µ[f ]∥ = ∥L(sm[f ]− sm+µ[f ])∥ (3.4)

is used as the estimate of the error in the approximation of Lf and µ ≥ 1. In the process,
an assumption that approximation order of m + µ provides a better description of the
function than an approximation order of m is made. This estimate is understood as an
approximation to the dominant term from expression (3.2).

Following [118], [119], we know that the approximation error of the interpolant sm is
upper-bounded∣∣∣∣∂αlf(x)

∣∣
x=x0

− ∂αlsm[f ](x)
∣∣
x=xk,0

∣∣∣∣ ≤ O
(
hm+µ+1−|αl|

)
as h → 0, (3.5)

1This requirement alone would yield an underdetermined system of linear equations that needs to
be solved to obtain the coefficient vectors. For a well defined problem, additional constraints, i.e.,∑n

j=1 λj [f ]πl(xj) = 0, are added.
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which allowed Reeger to conclude that the terms sm[πm,l(x)] − πm,l(x) appearing in the
approximation error E(x) are then also upper-bounded by O(h|αl|). Therefore, the dif-
ference between the error estimate and the dominant term in the error of kernel-based
interpolant with polynomial terms up to degree m is at most O(hm+µ+1) as h → 0. For
µ > 0 this is at least one order higher than the size of the dominant term appearing in the
interpolant. The estimation thus provides a reasonable approximation of the interpolation
error.

Naturally, the derivation of such pointwise error estimation only applies to smooth
enough functions, which is a clear limitation of the IMEX error indicator.

3.3 Strong-Form Mesh-Free hp-Adaptive Solution of Linear
Elasticity Problem

With all the building blocks required for the development of a strong-form meshless hp-
adaptive solution procedure, in this section, we finally provide the algorithm and its imple-
mentation. To the best of our knowledge, our attempt is the first of its kind – strong-form
meshless hp-adaptive solution procedure simultaneously controlling local spatial discretiza-
tion resolution and local approximation order.

The following publication also discusses the performance of the IMEX error indicator
on a set of linear elasticity problems.

Contributions.
This section represents the following contributions:

C6: We provide additional verification and performance analyses of the IMEX error indi-
cator, when applied to two- and three-dimensional linear elasticity problems, demon-
strating its versatile use.

C7: By following the well-established solve-estimate-mark-refine paradigm, we provide a
detailed description of all building blocks required to employ a hp-adaptive meshless
solution procedure based on the RBF-FD approximation.

Addressed hypotheses.
The following publication more or less encompasses all previous findings and, thus, further
confirms hypotheses H1 and H3–H5. Additionally, we demonstrate that an hp-adaptive
solution procedure can be used to effectively solve elliptic PDEs, thus confirming hypothesis
H6.

Publications included in this section:

• M. Jančič and G. Kosec, “Strong form mesh-free hp-adaptive solution of linear
elasticity problem,” Engineering with Computers, May 2023, issn: 1435-5663.
doi: 10.1007/s00366-023-01843-6. [Online]. Available: https://doi.org/
10.1007/s00366-023-01843-6

Regarding my contribution: I made a literature overview of the topic, participated
in planning and development of the algorithm, implemented the solution procedure,
executed the analyses and jointly prepared the manuscript with co-authors.

https://doi.org/10.1007/s00366-023-01843-6
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Abstract
We present an algorithm for hp-adaptive collocation-based mesh-free numerical analysis of partial differential equations. 
Our solution procedure follows a well-established iterative solve–estimate–mark–refine paradigm. The solve phase relies 
on the Radial Basis Function-generated Finite Differences (RBF-FD) using point clouds generated by advancing front node 
positioning algorithm that supports variable node density. In the estimate phase, we introduce an Implicit-Explicit (IMEX) 
error indicator, which assumes that the error relates to the difference between the implicitly obtained solution (from the 
solve phase) and a local explicit re-evaluation of the PDE at hand using a higher order approximation. Based on the IMEX 
error indicator, the modified Texas Three Step marking strategy is used to mark the computational nodes for h-, p- or hp-
(de-)refinement. Finally, in the refine phase, nodes are repositioned and the order of the method is locally redefined using 
the variable order of the augmenting monomials according to the instructions from the mark phase. The performance of 
the introduced hp-adaptive method is first investigated on a two-dimensional Peak problem and further applied to two- and 
three-dimensional contact problems. We show that the proposed IMEX error indicator adequately captures the global behav-
iour of the error in all cases considered and that the proposed hp-adaptive solution procedure significantly outperforms the 
non-adaptive approach. The proposed hp-adaptive method stands for another important step towards a fully autonomous 
numerical method capable of solving complex problems in realistic geometries without the need for user intervention.

Keywords RBF-FD · hp-adaptivity · Mesh-free · Linear elasticity · Error indicator

1 Introduction

Many natural and technological phenomena are modelled 
through Partial Differential Equations (PDEs), which can 
rarely be solved analytically—either because of geometric 
complexity or because of the complexity of the model at 
hand. Instead, realistic simulations are performed numeri-
cally. There are well-developed numerical methods that 
can be implemented in a more or less effective numerical 
solution procedure and executed on modern computers to 
perform virtual experiments or simulate the evolution of 

various natural or technological phenomena. Nonetheless, 
despite the immense computing power at our disposal, which 
allows us to solve ever more complex problems numerically, 
the development of efficient numerical approaches is still 
crucial. Relying solely on brute force computing often leads 
to unnecessarily long computations—not to mention wasted 
energy.

Most numerical solutions are obtained using mesh-based 
methods such as the Finite Volume Method (FVM), the 
Finite Difference Method (FDM), the Boundary Element 
Method (BEM) or the Finite Element Method (FEM). Mod-
ern numerical analysis is dominated by FEM [1] as it offers a 
mature and versatile solution approach that includes all types 
of adaptive solution procedures [2] and well understood 
error indicators [3]. Despite the widespread acceptance of 
FEM, the meshing of realistic 3D domains, a crucial part of 
FEM analysis where nodes are structured into polyhedrons 
covering the entire domain of interest, is still a problem that 
often requires user assistance or development of domain-
specific algorithms [4].
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In response to the tedious meshing of realistic 3D domains, 
required by FEM, and the geometric limitations of FDM and 
FVM, a new class of mesh-free methods [5] emerged in the 
1970s. Mesh-free methods do not require a topological rela-
tionship between computational nodes and can therefore oper-
ate on scattered nodes, which greatly simplifies the discreti-
sation of the domain [6], regardless of its dimensionality or 
shape [7, 8]. Just recently, they have also been promoted to 
Computer Aided Design (CAD) geometry aware numerical 
analysis [9]. Moreover, the formulation of mesh-free methods 
is extremely convenient for implementing h-refinement [10], 
considering different approximations of partial differential 
operators in terms of the shape and size of the stencil [11, 12] 
and the local approximation order [13]. However, they tend to 
be more computationally intensive as they require larger sten-
cils for stable computations [13, 14] and have limited preproc-
essing capabilities [15]. This may make them less attractive 
from a computational point of view, but the ability to work 
with scattered nodes and easily control the approximation 
order makes them good candidates for many applications in 
science and industry [16, 17].

Adaptive solution procedures are essential in problems 
where the accuracy of the numerical solution varies spatially 
and are currently subject of intensive studies. Two concep-
tually different adaptive approaches have been proposed, 
namely p-adaptivity or h-, r-adaptivity. In p-adaptivity, the 
accuracy of the numerical solution is varied by changing 
the order of approximation, while in h- and r-adaptivity, 
the resolution of the spatial discretisation is adjusted for the 
same purpose. In the h-adaptive approach, nodes are added 
or removed from the domain as needed, while in the r-adap-
tive approach the total number of nodes remains constant 
– the nodes are only repositioned with respect to the desired 
accuracy. Ultimately, h- and p-adaptivities can be com-
bined to form the so-called hp-adaptivity [18–20], where 
the accuracy of the solution is controlled with the order of 
the method and the resolution of the spatial discretisation.

Since the regions where higher accuracy is required are often 
not known a priori, and to eliminate the need for human inter-
vention in the solution procedure, a measure of the quality of the 
numerical solution, commonly called a posterior error indicator, 
is a necessary additional step in an adaptive solution procedure 
[4]. The most famous error indicator, commonly referred to as 
the ZZ-type error indicator, was introduced in 1987 by Zienkie-
wicz and Zhu [21] in the context of FEM and it is still an active 
research topic [22]. The ZZ-type error indicator assumes that 
the error of the numerical solution is related to the difference 
between the numerical solution and a locally recovered solu-
tion. The ZZ-type error indicator has also been employed in 
the context of mesh-free solutions of elasticity problems using 
the mesh-free Finite Volume Method [23] in both weak and 
strong form using the Finite Point Method [24]. Furthermore, 
it also served as an inspiration in the context of Radial Basis 

Function-Generated Finite Difference (RBF-FD) solution to 
Laplace equation [25]. Moreover, a residual-based class of error 
indicators [26] has been demonstrated in the elasticity problems 
using a Discrete Least Squares mesh-free method [27]. Nev-
ertheless, the most intuitive error indicators are based on the 
physical interpretation of the solution, usually evaluating the first 
derivative of the field under consideration [11] or calculating 
the variance of the field values within the support domain [10].

The advent of hp-adaptive numerical analysis began with 
FEM in the 1980s [28]. In hp-FEM, for example, one has the 
option of splitting an element into a set of smaller elements 
or increasing its approximation order. This decision is often 
considered to be the main difficulty in implementing the 
hp-adaptive solution procedure and was already studied by 
Babuška [28] in 1986. Since then, various decision-making 
strategies, commonly referred to as marking strategies, have 
been proposed [2, 29]. The early works use a simple Texas 
Three Step algorithm, originally proposed in the context of 
BEM [30], where the refinement is based on the maximum 
value of the error indicator. The first true hp-strategy was 
presented by Ainsworth [31] in 1997, since then many others 
have been proposed [2, 29]. In general, p- in FEM is more 
efficient when the solution is smooth. Based on this observa-
tion, most authors nowadays use the local Sobolev regular-
ity estimate to choose between the h- and the p-refinement 
[32–34] for a given finite element. Moreover, in [35] local 
boundary values are solved, while the authors of [36, 37] 
use minimisation of the global interpolation error methods.

For mesh-free methods, h-adaptivity comes naturally with 
the ability to work with scattered nodes, and as such has been 
thoroughly studied in the context of several mesh-free meth-
ods [38–40]. Only recently, the popular Radial Basis Func-
tion-generated Finite Differences (RBF-FD) [41] have been 
used in the h-adaptive solution of elliptic problems [25, 42] 
and linear elasticity problems [10, 43]. Researchers have also 
reported the combination of h- and r-adaptivity, which form a 
so-called hr-adaptive solution procedure [44]. The p-adaptive 
method, on the other hand, is still quite unexplored in the 
mesh-free community. However, the authors of [45] approach 
the p-adaptive RBF-FD method in solving Poisson’s equa-
tion with the idea of varying the order of the augmenting 
monomials to maintain the global order of convergence over 
the domain regardless of the potential variations in the spa-
tial discretisation distance. It should also be noted that some 
authors reported p-adaptive methods by locally increasing 
the number of shape functions, changing the interpolation 
basis functions, or simply increasing the stencil size [46–48]. 
These approaches are all to some extent p-adaptive, but not 
in their true essence. The authors of [49] have introduced a 
p-refinement with spatially variable local approximation order 
and come closest to a true p-adaptive solution procedure on 
scattered nodes. However, this work lacks an automated mark-
ing and refinement strategy for the local approximation order, 
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e.g. based on an error indicator. The automated marking and 
refinement strategies were used with the weak form h-p adap-
tive clouds [50], where the authors use grid-like h-enrichment 
to improve the local field description.

In this paper, we present our attempt to implement the 
hp-adaptive strong form mesh-free solution procedure using 
the mesh-free RBF-FD approximation on scattered nodes. 
Our solution procedure follows a well-established paradigm 
based on an iterative loop. To estimate the accuracy of the 
numerical solution, we employ original IMEX error indica-
tor. The marking strategy used in this work is based on the 
Texas Three Step algorithm [34], where the basic idea is 
to estimate the smoothness or analyticity of the numerical 
solution. Our refinement strategy is based on the recommen-
dations of [10], where the authors were able to obtain satis-
factory results using a purely h-adaptive solution procedure 
for elasticity problems. Although the chosen refinement and 
marking strategies are not optimal [36], the obtained results 
clearly outperform the non-adaptive approach.

2  hp‑adaptive solution procedure

In the present work, we focus on the implementation of 
mesh-free hp-adaptive refinement, which combines the 
advantages of h- and p-refinement procedures. The proposed 
hp-adaptive solution procedure follows the well-established 
paradigm based on an iterative loop, where each iteration 
step consists of four modules: 

1. Solve – A numerical solution û is obtained.
2. Estimate – An error indication of the obtained numeri-

cal solution.

3. Mark – Marking of nodes for refinement/de-refinement.
4. Refine – Refinement/de-refinement of the spatial discre-

tisation and local approximation order of the numerical 
method.

The workings of each module are further explained in the 
following subsections, while a full hp-adaptive solution 
procedure algorithm is given in Algorithm 1. For clarity, 
Fig. 1 also graphically sketches the ultimate goal of a single 
refinement iteration.

Algorithm 1 hp-adaptive solution procedure

Input: The problem, computational domain Ω, initial nodal density function
h : Ω → R, initial approximation order distribution m : Ω → N, the maximal
number of iterations Imax and adaptivity parameters αh,p, βh,p, λh,p, ϑh,p.
Output: The hp-refined numerical solution of the problem.
1: function adaptive solve(problem, Ω, h,m, Imax, αh,p, βh,p, λh,p, ϑh,p)
2: for i ← 0 to Imax do
3: Ω� ← discretise(Ω, h) � Discretises domain using nodal density

function h.
4: solution ← solve(problem,Ω�,m) � Obtains a numerical solution

to the problem.
5: indicator ← imex(problem, solution,Ω�,m) � Error indicator

computation.
6: if stopping criteria then
7: return solution
8: end if
9: h,m ← adapt(indicator, h,m,Ω�, αh,p, βh,p, λh,p, ϑh,p) � Refine

the nodes and approximation orders.
10: end for
11: return solution
12: end function

2.1  The SOLVE module

First, a numerical solution û to the governing problem must 
be obtained. In general, the numerical treatment of a sys-
tem of PDEs is done in several steps. First, the domain is 

Fig. 1  A sketch of a single hp-refinement iteration for a two-dimen-
sional problem. Note that the exponentially strong source (marked 
with red cross) is set at p =

(
1

2
,
1

3

)
 . The refined state has been 

obtained by employing h- and p-refinement strategies, thus the num-
ber of nodes and the local approximation orders in the neighbourhood 
of the strong source have been modified. Closed form solution has 
been used to indicate the error in the estimate module
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discretised by positioning the nodes, then the linear differen-
tial operators in each computational node are approximated, 
and finally the system of PDEs is discretised and assembled 
into a sparse linear system. To obtain a numerical solution 
û , the sparse system is solved.

2.1.1  Domain discretisation

While traditional mesh-based methods discretise the domain 
by building a mesh, mesh-free methods simplify this step to 
the positioning of nodes, as no information about internodal 
connectivity is required. With the mathematical formula-
tion of the mesh-free methods being dimension-independent, 
we accordingly choose a dimension-independent algorithm 
for node generation based on Poisson disc sampling [51]. 
Conveniently, the algorithm also supports spatially variable 
nodal densities required by the h-adaptive refinement meth-
ods. An example of a variable node density discretisation 
can be found in Fig. 2.

Interested readers are further referred to the original paper 
[51] for more details on the node generation algorithm, its 
stand-alone C++ implementation in the Medusa library [52], 
and follow-up research focusing on its parallel implementa-
tion [53] and parametric surface discretisations [54].

2.1.2  Approximation of linear differential operators

Having discretised the domain, we proceed to the approxi-
mation of linear differential operators. In this step, a linear 

differential operator L is approximated over a set of neigh-
bouring nodes, commonly referred to as stencil nodes.

To derive the approximation, we assume a central point 
xc ∈ Ω and its stencil nodes 

{
xi
}n

i=1
= N  for stencil size n. 

A linear differential operator in xc is then approximated 
over its stencil with the following expression

for an arbitrary function u and yet to be determined weights 
w which are computed by enforcing the equality of approxi-
mation (1) for a chosen set of basis functions.

In this work, we use Radial Basis Functions (RBFs) 
augmented with monomials. To eliminate the dependency 
on a shape parameter, we choose Polyharmonic Splines 
(PHS) [14] defined as

for Eucledian distance r. The chosen approximation basis 
effectively results in what is commonly called the RBF-FD 
approximation method [41].

Furthermore, it is necessary that the stencil nodes 
form a so-called polynomial unisolvent set [55]. In this 
work, we follow the recommendations of Bayona [14] and 
define the stencil size as twice the number of augmenting 
monomials, i.e.

for monomial order m and domain dimensionality d. This, 
in practice, results in large enough stencil sizes to satisfy 
the requirement, so that no special treatment was needed to 
assure unisolvency. While special stencil selection strate-
gies showed promising results [11, 56], a common choice 
for selecting a set of stencil nodes N  is to simply select the 
nearest n nodes. The latter approach was also used in this 
work. Figure 2 shows example stencils for different approxi-
mation orders m on domain boundary and its interior.

It is important to note that the augmenting monomials 
allow us to directly control the order of the local approxi-
mation method. The approximation order corresponds to 
the highest augmenting monomial order m in the approx-
imation basis. However, the greater the approximation 
order the greater the computational complexity due to 
larger stencil sizes [13]. Nevertheless, the ability to con-
trol the local order of the approximation method sets the 
foundation for the p-adaptive refinement.

To conclude the solve module, the PDEs of the govern-
ing problem are discretised and assembled into a global 

(1)(Lu)(xc) ≈

n∑

i=1

wiu(xi),

(2)f (r) =

{
rk, k odd

rk log r, k even
,

(3)n = 2

(
m + d

m

)

Fig. 2  An example of domain discretisation with scattered nodes and 
variable node density. Example stencils are also shown for different 
approximation orders m on the domain boundary and its interior
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sparse system. The solution of the assembled system 
stands for the numerical solution û.

2.2  The ESTIMATE module (Implicit‑Explicit error 
indicator)

In the estimation step, critical areas with high error of the 
numerical solution are identified. Identifying such areas is 
not a trivial task. In rare cases where a closed form solution 
to the governing problem exists, we can directly determine 
the accuracy of the numerical solution. Therefore, other 
objective metrics, commonly referred to as error indicators, 
are needed to indicate areas with high error of the numerical 
solution.

2.2.1  IMplicit‑EXplicit (IMEX) error indicator

In this work we will use an error indicator based on the 
implicit-explicit [57] evaluation of the considered field. 
IMEX makes use of the implicitly obtained numerical solu-
tion and explicit operators (approximated by a higher order 
basis) to reconstruct the right-hand side of the governing 
problem. To explain the basic idea of IMEX, let us define 
a PDE of type

where L is a differential operator applied to the scalar field 
u and fRHS is a scalar function. To obtain an error indica-
tor field � , the problem (4) is first solved implicitly using a 
lower order approximation Lim of operators L , obtaining the 
solution uim in the process. The explicit high order operators 
L
ex are then used over the implicitly computed field uim to 

reconstruct the right-hand side of the problem (4) obtaining 
f ex
RHS

 in the process. The error indication is then calculated 
as � = |fRHS − f ex

RHS
| . The calculation steps of the IMEX error 

indicator are also shown in Algorithm 2.

Algorithm 2 IMEX error indicator

Input: The problem, domain Ω, differential operators L, low-order approxi-
mation basis ξ, high order approximation basis ζ.
Output: Error indicator field η.
1: function indicate error(problem, Ω, L, ξ, ζ)
2: Lim ← approximate(Ω, ξ) � Obtain low-order approximation of

differential operators L.
3: uim, fRHS ← solve(problem,Ω,Lim) � Obtain a numerical solution

to the problem.
4: Lex ← approximate(Ω, ζ) � Obtain high order approximation of

differential operators L.
5: fex

RHS ← evaluate(problem,Ω,Lex, uim) � Explicit re-evaluation.
6: η ← compute(fRHS , f

ex
RHS) � Obtain error indicator field.

7: return η
8: end function

The assumption that the deviation of the explicit high 
order evaluation Lexuim from the exact fRHS corresponds 

(4)Lu = fRHS,

to the error of the solution uim is similar to the reasoning 
behind the ZZ-type indicators, where the deviation of the 
recovered high order solution from the computed solution 
characterises the error. As long as the error in uim is high, 
the explicit re-evaluation will not correctly solve the Equa-
tion (4). However, as the error in uim decreases, the differ-
ence between fRHS and f ex

RHS
 will also decrease, assuming 

that the error is dominated by the inaccuracy of uim and not 
by the differential operator approximation.

It is worth noting that the definition of IMEX is general 
in the sense that computing the error indication � does 
not distinguish between the interior and boundary nodes. 
In the boundary nodes, the error indicator � is calculated 
in the same way as in the interior nodes. In the case of 
Dirichlet boundary conditions, the error indicator is triv-
ial because the solution fields are exactly imposed, i.e. 
the error indicator results in � = 0 . However, in case of 
boundary conditions involving the evaluation of deriva-
tives (Robin and Neumann), � ≠ 0.

2.3  The MARK module

After the error indicator � has been obtained for each 
computational point in domain Ω , a marking strategy is 
applied. The main goal of this module is to mark the nodes 
with too high or too low values of the error indicator to 
achieve a uniformly distributed accuracy of the numerical 
solution and to reduce the computational cost of the solu-
tion procedure – by avoiding fine local field descriptions 
and high order approximations where this is not required. 
Moreover, the marking strategy not only decides whether 
or not (de-)refinement should take place at a particular 
computational node, but also defines the type of refinement 
procedure if there are several to choose from. In this work, 
we use a modified Texas Three Step marking strategy [30, 
58], originally restricted to refinement (no de-refinement) 
with the h- and p-refinement types. This chosen strategy 
was also considered in one of the recent papers by Eib-
ner [34], who showed that, although extremely simple to 
understand and implement, it can provide results good 
enough to demonstrate the advantages of mesh-based hp-
adaptive solution procedures.

In each iteration of the adaptive procedure, the marking 
strategy starts by checking the error indicator values �i for 
all computational nodes in the domain. Unlike the originally 
proposed marking strategy [34] that used only refinement, 
we additionally introduce de-refinement. Therefore, if �i is 
greater than ��max for the maximum indicator value �max and 
a free model parameter � ∈ (0, 1) , the node is marked for 
refinement. If �i is less than ��max for a free model parameter 
� ∈ (0, 1) ∧ � ≤ � , the node is marked for de-refinement. 
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Otherwise, the node remains unmarked, which means that 
no (de-)refinement should take place. The marking strategy 
can be summarised with a single equation

In the context of mesh-based methods, it has already been 
observed, that such marking strategy, although easy to 
implement, is far from optimal [2, 34]. Additionally, it has 
also been demonstrated that in case of smooth solutions 
p-refinement is preferred while h-refinement is preferred in 
volatile fields, e.g. in vicinity of a singularity in the solution 
[2, 36], which cannot be achieved with the chosen marking 
strategy. Additional discussion on this issue can be found 
in Sect. 4, where problems with singularity in the solution 
are discussed, and in Sect. 2.6.3 where we discuss some 
guidelines for possible work on improved marking strategies.

Since our work is focused on the implementation of hp-
adaptive solution procedure rather than discussing the opti-
mal marking strategy, we decided to secure full control over 
the marking strategy by treating h- and p-methods separately 
– but at the cost of higher number of free parameters. There-
fore, the marking strategy is modified by introducing param-
eters 

{
�h, �h

}
 and 

{
�p, �p

}
 for separate treatment of h- and 

(5)

⎧
⎪
⎨
⎪
⎩

𝜂i > 𝛼𝜂max, refine

𝛽𝜂max ≤ 𝜂i ≤ 𝛼𝜂max, do nothing

𝜂i < 𝛽𝜂max, de-refine

.

p-refinements, respectively (see Fig. 3 for clarification). 
Note that the proposed modified marking strategy can mark 
a particular node for h-, p- or hp-(de-)refinement if required, 
otherwise the computational node is left unchanged.

2.4  The REFINE module

After obtaining the list of nodes marked for modification, the 
refinement module is initialised. In this module, the local field 
description and local approximation order are left unchanged 
for the unmarked nodes, while the remaining nodes are further 
processed to determine other refinement-type-specific details 
– such as the amount of the (de-)refinement. Our h-refinement 
strategy is inspired by the recent h-adaptive mesh-free solution 
of elasticity problem [10], where the following h-refinement 
rule was introduced

for the dimensionless parameter � ∈ [1,∞) allowing us to 
control the aggressiveness of the refinement – the larger the 
value, the greater the change in nodal density, as shown in 
Fig. 4 on the left. This refinement rule also conveniently 
refines the areas with higher error indicator values more than 

(6)hnew
i

(p) =
hold
i

�i−��max
�max−��max

(
� − 1

)
+ 1

Fig. 3  A visual representation 
of h- and p-(de)refinement 
marking strategy

Fig. 4  A visual representation 
of the (de-)refinement strategies 
for different values of refine-
ment aggressiveness � and 
de-refinement aggressiveness 
� . Notice that both refinement 
types also have lower and upper 
limits
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those closer to the upper refinement threshold �h�max . Simi-
larly, a de-refinement rule is proposed

where parameter � ∈ [1,∞) allows us to control the aggres-
siveness of de-refinement.

The same refinement (6) and de-refinement (7) rules are 
applied to control the order of local approximation (p-refine-
ment), except that this time the value is rounded to the near-
est integer, as shown in Fig. 4 on the right. Similarly, and for 
the same reasons as for the marking strategy (see Sect. 2.3), 
we consider a separate treatment of h- and p-adaptive pro-
cedures by introducing (de-)refinement aggressiveness 
parameters 

{
�h, �h

}
 and 

{
�p, �p

}
 for h- and p-refinement 

types respectively.

2.5  Finalization step

Before the 4 modules can be iteratively repeated, the 
domain is re-discretised taking into account the newly 
computed local internodal distances hnew

i
(p) and the local 

(7)hnew
i

(p) =
hold
i

��max−�i
��max−�min

(
1

�
− 1

)
+ 1

,

approximation orders mnew
i

(p) . However, both are only 
known in the computational nodes, while global functions 
ĥnew(p) and m̂new(p) over our entire domain space Ω are 
required.

We use Sheppard’s inverse distance weighting interpo-
lation using the closest nh

s
 neighbours to construct ĥnew(p) 

and the closest nm
s

 neighbours to construct m̂new(p) . In 
general, the proposed refinement strategy can introduce 
aggressive and undesirable local jumps in node density, 
which ultimately leads to a potential violation of the quasi-
uniform internodal spacing requirement within the stencil. 
To mitigate this effect, we use relatively large nh

s
= 30 to 

smoothen such potential local jumps. The m̂new(p) is much 
less sensitive in this respect and therefore a minimum 
nm
s
= 3 is used.
Figure 5 schematically demonstrates 3 examples of 

hp-refinements. For demonstration purposes, the refine-
ment parameters for h- and p-adaptivity are the same, i.e. 
{�, �, �,�} =

{
�h, �h, �h, �h

}
=
{
�p, �p, �p, �p

}
 . Addition-

ally, the de-refinement aggressiveness � and the lower 
threshold � are kept constant, so that effectively only the 
upper limit of refinement � and the refinement aggres-
siveness � are altered. We observe that the effect of the 

Fig. 5  Demonstration of 
hp-refinement for selected 
values of refinement parameters. 
The top left figure shows the 
numerical solution before its 
refinement, while the rest show 
its refined state for different 
values of refinement parameters. 
Contour lines are used to show 
the absolute error of the numeri-
cal solution. To denote the 
p-refinement, the nodes are 
coloured according to the local 
approximation order. For clarity, 
all figures are zoomed to show 
only the neighbourhood of an 
exponentially strong source 
e
−a‖x−xs‖2

 positioned at 
x
s
=

(
1

2
,
1

3

)
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refinement parameters is somewhat intuitive. The greater 
the aggressiveness � , the better the local field description 
and the greater the number of nodes with high approxima-
tion order. A similar effect is observed when manipulating 
the upper refinement threshold � , except that the effect 
comes at a smoother manner. Note also that all refined 
states were able to increase the accuracy of the numerical 
solution from the initial state.

2.6  Note on marking and refinement strategies

With the chosen marking and refinement strategies, a sepa-
rate treatment of h- and p-refinement types turned out to be 
a necessary complication for a better overall performance 
of the solution procedure. Nevertheless, we have tried to 
simplify the solution procedure as much as possible. In the 
process, important observations have been made – some of 
which we believe should be highlighted. This section there-
fore opens a discussion on important remarks related to the 
proposed marking and refinement modules.

2.6.1  The error indicators

Since the h- and p-refinements are conceptually different, 
our first attempt was to employ two different error indicators 
– one for each type of refinement. We employed the previ-
ously proposed variance of field values [10] for marking the 
h-refinement and the approximation order based IMEX for 
the p-refinement. Unfortunately, no notable advantages of 
such solution procedure has been observed and was therefore 
discarded due to the increased implementation complexity. 
However, other combinations that might show more promis-
ing results should be considered in future work.

2.6.2  Free parameters

In the proposed solution procedure, each adaptivity type 
comes with 4 free parameters that need to be defined, i.e. {
�h,p, �h,p, �h,p, �h,p

}
 . This gives a total of 8 free parameters 

that can be fine-tuned to a particular problem. While we have 
tried to avoid any kind of fine-tuning, we have nevertheless 
observed that these parameters can have a crucial impact on 
the overall performance of the hp-adaptive solution proce-
dure in terms of (i) the achieved accuracy of the numerical 
solution, (ii) the spatial variability of the error of the numeri-
cal solution, (iii) the computational complexity, and (iv) the 
stability of the solution procedure.

We observed that if the refinement aggressiveness �h is 
too high, the number of nodes can either diverge into unrea-
sonably large domain discretisations or ultimately violate 
the quasi-uniform internodal spacing requirement, making 
the solution procedure unstable. Note that here we refer to 
the stability of the solution of the discretised PDEs, which 

ultimately governs the stability of the whole solution pro-
cedure. Furthermore, a large number of nodes combined 
with high approximation orders can lead to unreasonably 
high computational complexity in a matter of few iterations. 
However, when refinement aggressiveness �h and �p is set 
too low, the number of required iterations can increase to 
such an extent that the entire solution procedure becomes 
inefficient. On top of that, the lower and upper threshold 
multipliers � and � also play a crucial role. If � is too low, 
almost the entire domain is refined. Moreover, if � is too 
large, almost no refinement takes place and if it does, it is 
extremely local, which again has no beneficial consequences 
as it often leads to a violation of the quasi-uniform nodal 
distribution requirement.

In our tests, based on extensive experimental parameter 
testing, we have selected a reasonable combination of all 
8 parameters that lead to a stable solution procedure while 
demonstrating the advantages of the proposed hp-adaptive 
approach. A thorough analysis of these parameters and their 
correlation would most likely lead to better results, as there 
is no guarantee that the selected parameters are optimal. 
However, such an analysis is beyond the scope of this paper, 
whose aim is to present an hp-adaptive solution procedure 
in the context of mesh-free methods and not to discuss the 
optimal marking and refinement strategies. Nevertheless, we 
have tried to reduce the number of free parameters using the 
same values for h- and p-adaptivity (see Fig. 5). While this 
approach also yielded satisfactory results that outperformed 
the numerical solutions obtained with uniform nodal and 
approximation order distributions in terms of accuracy, the 
full 8-parameter formulation easily yielded significantly bet-
ter results.

2.6.3  A step beyond the artificial refinement strategies

As discussed in Sect. 2.3 and later in Sect. 4, the Texas 
Three Step based marking strategy cannot assure the opti-
mal balance of h- and p-refinements due to missing local 
data regularity estimation [2]. In FEM, local Sobolev regu-
larity estimate is commonly used to choose between the h- 
and the p-refinement [32–34]. Using an estimate for upper 
error bound [59, 60] one could generalise this approach to 
meshless methods, essentially upgrading the strategy with 
an information on the minimal internodal spacing required 
for local approximation of the partial differential operator 
of a certain order.

The refinement strategy could also be based on a spe-
cific knowledge about convergence rates and computational 
complexity in terms of internodal distance h(p) and local 
approximation orders m(p).

It has already been shown by Bayona [61] that the approx-
imation error of mesh-free interpolant F is bounded by
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Note that the constant C present in Equation (8) depends on 
the stencil and on the approximation order, both of which 
are modified by the hp-adaptive solution procedure. Nev-
ertheless, for the purpose of illustrating how a better mark-
ing strategy could be constructed, we decide to simplify the 
Equation (8) to saying that the error e is proportional to 
h(p)m(p) . Knowing the target error et , we write the ratio of 
et∕e0 as

where mt is used to denote the target approximation order 
and m0 is the current order of the approximation used to 
compute current error e0.

From Equation (9) a smarter guess for target local approx-
imation order can be obtained

Such strategy would conveniently leave the approximation 
order unchanged when et = e0 , increase it when et < e0 and 
decrease it when et > e0.

A step even further could be to additionally consider the 
change in computational complexity, similar to what the 
authors of [35] and [45] have already shown. Therefore, we 
believe that future work should consider the minimum local 
computational complexity criteria. A rough computational 
complexity can be obtained with the help of

for domain dimensionality d and target and current inter-
nodal distances ht and h0 respectively.

2.7  Implementation note

The entire hp-adaptive solution procedure from Algo-
rithm 1 is implemented in C++. All meshless methods and 
approaches used in this work are included in our in-house 
developed Medusa library [52]. The code1 was compiled 
using g++ (GCC) 9.3.0 for Linux with -03 -DNDEBUG 
-fopenmp flags. Post-processing was done using Python 3.10 

(8)‖F(p) − u(p)‖∞ ≤ Chm+1 max
p∈Ω

�L(m+1)(u(p))�.

(9)
et

e0
∝

hmt

hm0

= hmt−m0 ,

(10)mt = m0 + ln
et

e0
.

(11)� ∝

(
mt + d

d

)3(
1

ht

)d

(
m0 + d

d

)3(
1

h0

)d
,

and Jupyter notebooks, also available in the provided git 
repository.

3  Demonstration on exponential peak 
problem

The proposed hp-adaptive solution procedure is first dem-
onstrated on a synthetic example. We chose a 2-dimensional 
Poisson problem with exponentially strong source positioned 
at xs =

(
1

2
,
1

3

)
 . This example is categorized as a difficult 

problem and is commonly used to test the performance of 
adaptive solution procedures [2, 29, 42, 62]. The problem 
has a tractable solution u(x) = e−a‖x−xs‖

2

 , which allows us 
to evaluate the precision of the numerical solution û , e.g. in 
terms of the infinity norm

Governing equations are

for a d-dimensional domain Ω and strength a = 103 of the 
exponential source. The domain boundary is split into two 
se t s :  Neumann  Γn =

{
x, x ≤

1

2

}
 and  Di r i ch le t 

Γd =

{
x, x > 1

2

}
 boundaries. An example hp-refined numer-

ical solution is shown in Fig. 6.
In the continuation of this paper, the numerical solution 

of the final linear system is obtained by employing BiCG-
STAB solver with a ILUT preconditioner from the Eigen 
C++ library [63]. Global tolerance was set to 10−15 with a 
maximum number of 800 iterations and drop-tolerance and 
fill-factor set to 10−5 and 50 respectively. While the initial 
adaptivity solution was obtained without the guess, all other 
iterations used the previous numerical solution ûi−1 as the 
guess for new numerical solution ûi , effectively reducing 
the number of iterations required by the BiCGSTAB solver.

3.1  Convergence analysis of unrefined solution

The problem is first solved on a two-dimensional unit disc 
without employing any refinement procedures, i.e. with 
uniform nodal and approximation order distributions. The 
shapes approximating the linear differential operators are 

(12)e∞ =
‖û − u‖∞
‖u‖∞

, ‖u‖∞ = max
i=1,…,N

�ui�.

(13)∇2u(x) = 2ae−a‖x−xs‖
2

(2a��x − xs
�� − d) in Ω,

(14)u(x) = e−a‖x−xs‖
2

on Γd,

(15)∇u(x) = −2a(x − xs)e
−a‖x−xs‖2

on Γn,

1 The source code is available at: https:// gitlab. com/ e62Lab/ public/ 
2022_p_ hp- adapt ivity under tag v1.2.

70 Chapter 3. hp-Adaptive Solution Procedure



 Engineering with Computers

1 3

computed using the RBF-FD with PHS order k = 3 and 
monomial augmentation m ∈ {2, 4, 6, 8}.

Figure 7 shows the results. Each plotted point is an aver-
age obtained after 50 consecutive runs with slightly different 
domain discretisations (a random seed for generating expan-
sion candidates was changed, see [51] for more details). In 
this way, we can not only study the convergence behav-
iour, but also evaluate how prone the numerical method is 
to non-optimal domain discretisations. The convergence 
of the numerical solution for selected monomial augmen-
tations is shown on the left. We observe that due to the 
strong source, the convergence rates no longer follow the 

theoretical prediction of being proportional to hm . Instead, 
the convergence rates for a small number of computational 
nodes ( N ⪅ 2000 ) are significantly lower than that obtained 
for larger domain discretisations ( N ⪆ 3000 ) for all approxi-
mation orders m > 2 . Furthermore, the accuracy gain using 
higher order approximations with small domain discreti-
sations is practically negligible. However, when the local 
field description is sufficient, both the numerical solution 
and the IMEX error indicator (Fig. 7 on the right) give reli-
able results. While we could have forced at least one node in 
the neighbourhood of the source, we do not use any special 
techniques in this work. Instead, further research is simply 
limited to sufficiently large domains so that this observation 
does not represent an issue.

Moreover, the behaviour of the IMEX error indicator is 
studied on the right side of Fig. 7. Here, the approxima-
tion order m means that the implicit numerical solution uim 
was obtained with approximation order m, while the explicit 
operators Lex from IMEX were approximated using mono-
mials up to and including order m + 2 . The observations 
show that the maximum value of the error indicator also 
converges with the number of computational nodes. Moreo-
ver, we can also observe the aforementioned change in the 
convergence rate of the numerical solution, since the maxi-
mum value of the error indicator for domain sizes N ⪅ 3000 
is approximately constant.

3.2  Analysis of hp‑refined solution

The same problem is now solved by employing the hp-
adaptivity. Free parameters are adjusted to each refinement 
type, as can be seen in Table 1. Adaptivity iteration loop is 
stopped after a maximum of Niter iterations. For practical 
use, other stopping criteria could also be used, e.g. based on 
the maximum error indicator reduction

for the iteration index j. The shapes are computed with RBF-
FD using the PHS with order k = 3 and local monomial aug-
mentation restricted to choose between approximation orders 
m ∈ {2, 4, 6, 8} . Note that the IMEX error indicator increases 
the local approximation order by 2, effectively using mono-
mial orders mIMEX ∈ {4, 6, 8, 10} . Furthermore, to avoid 
unreasonably large number of computational nodes, the 
maximum number of allowed nodes Nmax is defined. Once 
this number is reached, further h-refinement is prevented and 

(16)
�
j
max

�0
max

≤ � ,

Fig. 6  Example hp-refined solution to exponential peak problem

Fig. 7  Convergence of unrefined numerical solution (left) and IMEX 
error indicator (right). Figure only shows a median value after 50 
runs with slightly different domain discretisations. Note that, the 
approximation order m in the right figure denotes the approximation 
order used to obtain the numerical solution, while the explicit opera-
tors employed by the IMEX error indicator are approximated with 
orders m + 2

Table 1  Adaptivity parameters 
used to obtain solution to the 
peak problem

�h �h �h �h �p �p �p �p hmax Nmax Niter

0.175 0.225 2.625 1.01 10−4 0.05 5 1.258 0.1 2.5 ⋅ 105 70
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only de-refinement is allowed, while the p-adaptive method 
retains its full functionality. To avoid insufficient local field 
description, the local nodal density is limited by an upper 
bound, i.e. h(p) ≤ hmax . The order of the PHS is left constant.

3.2.1  A brief analysis of IMEX error indicator

Figure 8 shows example indicator fields for the initial itera-
tion, the intermediate iteration, and the iteration that 
achieved the best numerical solution accuracy – hereafter 
also referred to as the best-performing iteration or simply 
the best iteration. The third column shows the IMEX error 

indicator. We can see that the IMEX has successfully located 
the position of the strong source at xs =

(
1

2
,
1

3

)
 as the high-

est indicator values are seen in its vicinity. Furthermore, the 
second column shows that both the accuracy of the numeri-
cal solution and the uniformity of the error distribution were 
significantly improved by the hp-adaptive solution proce-
dure, further proving that IMEX can be successfully used as 
a reliable error indicator.

The behaviour of IMEX over 70 adaptivity iterations is 
also studied in Fig. 9. We are pleased to find that the con-
vergence limit of the indicator around iteration Niter = 60 
agrees well with the convergence limit of the numerical 

Fig. 8  Refinement demonstration. Initial iteration (top row), inter-
mediate iteration (middle row) and best-performing iteration (bottom 
row) accompanied with solution error (middle column) and IMEX 

error indicator values (right column). The IMEX values for Dirichlet 
boundary nodes are not shown. A red cross is used to mark the loca-
tion of the strong peak
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solution. This observation also makes the IMEX error 
indicator suitable for stopping criteria. Note that, in the 
process, the maximum error of the numerical solution has 
been reduced by about 9 orders of magnitude, while the 
maximum value of the error indicator has been reduced 
by about 7 orders of magnitude. In addition, Fig. 9 also 
shows the number of computational nodes with respect to 
the adaptivity iterations.

3.2.2  Approximation order distribution

The iterative adaptive procedure starts by obtaining the 
numerical solution of the unrefined problem setup. In this 
step, the approximation with the lowest approximation 
order, i.e. m = 2 , is assigned to all computational nodes. 
Later, the approximation orders are changed according to 
the marking and refinement strategies. Figure 8 shows the 
approximation order distributions for 3 selected adaptivity 
iterations. We can observe that the highest approximation 
orders are all near the exponentially strong source. Moreo-
ver, due to h-adaptivity, the node density in the neighbour-
hood of the strong source is also significantly increased, i.e. 
hmax∕hmin ≈ 52 in the best-performing iteration.

After applying the p-refinement strategy in the refinement 
step, the approximation order in two neighbouring nodes 
may differ by more than one. While numerical experiments 
with FEM have shown that heterogeneity of polynomial 
order in FEM leads to undesired oscillations of the approxi-
mated solution [64], no similar behaviour was observed 
in our analyses with our setup using mesh-free methods. 
Thus, in contrast to p-FEM, where additional smoothing of 
the approximation order takes place within the refinement 

module, we have completely avoided such manipulations and 
allow the approximation order in two neighbouring nodes to 
differ by more than one.

3.2.3  Convergence rates of hp‑adaptive solution procedure

Finally, the convergence behaviour of the proposed hp-
adaptive solution procedure is studied. In addition to the 
convergence of a single hp-adaptive run, Fig. 10 shows the 
convergences obtained without the use of refinement proce-
dures, i.e. solutions obtained with uniform internodal spac-
ing and approximation orders over the entire domain. The 
figure clearly shows that a hp-adaptive solution procedure 
was able to significantly improve the numerical solution in 
terms of accuracy and computational points required.

As previously discussed by Eibner [34] and Demkowicz 
[36], we believe that a more complex marking and refine-
ment strategies would further improve the convergence 
behaviour, but already the proposed hp-adaptive solution 
procedure significantly outperforms the unrefined solutions. 
Specifically, the refined solution is almost 4 orders of mag-
nitude more accurate than the unrefined solution (for the 
highest approximation order m = 8 used) at about 104 com-
putational nodes.

4  Application to linear elasticity problems

In this section we address two problems from linear elastic-
ity that are conceptually different from the exponential peak 
problem discussed in Sect. 3. While the solution of exponen-
tial peak problem is infinitely smooth, these two problems 
both have a singularity in the solution.

In areas of smooth solution, the hp-strategy should favour 
p-refinement (assuming that the local discretization is suffi-
cient, as briefly discussed in Sect. 3.1), while near the singu-
larity, h-refinement should be preferred [2, 36]. However, the 
Texas Three Step based marking strategy used in this paper 

Fig. 9  In the top row convergence of IMEX error indicator (blue) 
and convergence of numerical solution (red) within 70 iterations 
is shown, while the total number of computational nodes is shown 
below

Fig. 10  Convergence of the hp-refined solution compared to the con-
vergence of the unrefined solutions
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cannot trivially achieve this, since the strategy has no knowl-
edge of the smoothness of the solution field. In addition, the 
strategy also cannot perform pure h- or pure p-refinement 
[34] (see Fig. 3), which would be ideal in the limiting situ-
ations. Instead, the strategy used enforces an increase in the 
approximation order by its design – even if the solution is not 
smooth and even if low-regularity data is being used to con-
struct the approximation. Nevertheless, in our experiments 
we observed an increase of the approximation order near the 
singularity only in the first few iterations, while the following 
iterations were focused on improving the local field descrip-
tion with h-refinement. This observation is also in agreement 
with reports from the literature [2, 34], where authors justify 
the use of the Texas Three Step marking strategy also for 
problems with singularity in the solution.

4.1  Fretting fatigue contact

The application of the proposed hp-adaptive solution pro-
cedure is further expanded to study a linear elasticity prob-
lem. Specifically, we obtain a hp-refined solution to fretting 
fatigue contact problem [65] for which no closed form solu-
tion is known.

The problem dynamics is governed by the Cauchy-Navier 
equations

with unknown displacement vector u , external body force f  
and Lamé parameters � and � . The domain of interest is a 
thin rectangle of width W, length L and thickness D. Axial 
traction �ax is applied to the right side of the rectangle, while 
a compression force is applied to the centre of the rectangle 
to simulate contact. The contact is simulated by a compress-
ing force F generated by two oscillating cylindrical pads of 
radius R, causing a tangential force Q. The tractions intro-
duced by the two pads are predicted using an extension of 
Hertzian contact theory, which splits the contact area into 
the stick and slip zones depending on the friction coefficient 
�  a n d  t h e  c o m b i n e d  e l a s t i c i t y  m o d u l u s 
E∗−1 =

(
1−�2

1

E1

+
1−�2

2

E2

)
 , where Ei and �i are the Young’s mod-

ulus and the Poisson’s ratios of the sample and the pad, 
respectively. The problem is shown schematically in Fig. 11 
together with the boundary conditions.

Theoretical predictions from [10] are used to obtain the 
contact half-width

with normal traction

(17)(� + �)∇(∇ ⋅ u) + �∇2u = f

(18)a = 2

√
FR

t�E∗
,

and tangential traction

for c = a
√

1 −
Q

�f
 defined as the half-width of the slip zone 

and e = sgn(Q)
a�ax
4�p0

 is the eccentricity due to axial loading. 

Note that the inequalities Q ≤ �F and �ax ≤ 4
(
1 −

√
1 −

Q

�F

)
 

must hold for these expressions to be valid.
Plane strain approximation is used to reduce the prob-

lem from three to two dimensions and symmetry along 
the horizontal axis is used to further halve the problem 
size. Finally, Ω = [−L∕2, L∕2] × [−W∕2, 0] is taken as the 
domain.

We  t a k e  E1 = E2 = 72.1GPa  ,  �1 = �2 = 0.33  , 
L = 40mm , W = 10mm , t = 4mm , F = 543N , Q = 155N , 
�ax = 100MPa , R = 10mm and � = 0.3 for the model 
parameters. With this setup, the half-contact width a is equal 
to 0.2067mm , which is about 200 times smaller than the 
domain width W. For stability reasons, the 4 corner nodes 
were removed after the domain was discretised.

The linear differential operators are approximated with 
RBF-FD using the PHS with order k = 3 and local mono-
mial augmentation limited to choose between approximation 
orders m ∈ {2, 4, 6, 8} . The PHS order was left constant dur-
ing the adaptive refinement. The hp-refinement parameters 
used to obtain the numerical solution are given in Table 2.

(19)p(x) =

{
p0

√
1 −

x2

a2
, |x| < a

0, else
, p0 =

√
FE∗

t𝜋R
,
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⎪
⎪
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��
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a2
−

c

a

�
1 −
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�
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�
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x2

a2
, c ≤ �x − e� and �x� ≤ a

0, else

Fig. 11  Fretting fatigue contact problem scheme and boundary condi-
tions
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Figure 12 shows an example of a hp-refined solution 
to fretting fatigue problem in the last adaptivity iteration 
with N = 46 626 computational nodes. We see that the 
solution procedure has successfully located the two criti-
cal points, i.e. the fixed upper left corner with a stress 
singularity and the area in the middle of the upper edge 
where contact is simulated. Note that the highest stress 
values (about 2 times higher) were calculated in the sin-
gularity in the upper left corner, but these nodes are not 
shown as our focus is shifted towards the area under the 
contact.

4.1.1  Surface traction under the contact

For a detailed analysis, we consider the surface trac-
tion �xx , as it is often used to determine the location of 
crack initiation. The surface traction is shown in Fig. 13 
for 6 selected adaptivity iterations. The mesh-free nodes 
are coloured according to the local approximation order 
enforced by the hp-adaptive solution procedure. The mes-
sage of this figure is twofold. First, it is clear that the pro-
posed IMEX error indicator can be successfully used in 
linear elasticity problems, and second, we find that the hp-
adaptive solution procedure has successfully approximated 
the surface traction near the contact. In doing so, the local 
field description under the contact has been significantly 
improved and the local approximation orders have taken a 
non-trivial distribution.

The surface traction in Fig. 13 is additionally accompa-
nied with the FEM results on a much denser mesh with more 
than 100,000 DOFs obtained with the commercial solver 
 Abaqus® [65]. To calculate the absolute difference between 
the two methods, the mesh-free solution was interpolated to 
Abaqus’s computational points using Sheppard’s inverse dis-
tance weighting interpolation with 2 nearest neighbours. We 
see that the absolute difference under the contact decreases 
with the number of adaptivity iterations and eventually set-
tles at approximately 2 % of the maximum difference from 
the initial iteration. As expected, the highest absolute dif-
ference is at the edges of the contact, i.e. around x = a and 
x = −a , while the difference is even smaller in the rest of 
the contact area. The absolute difference between the two 
methods is further studied in Fig. 14, where the mean of 
|�FEM

xx
− �mesh-free

xx
| under the contact area, i.e. −a ≤ x ≤ a , is 

shown. We observe that the mesh-free hp-refined solution 
converges towards the reference FEM solution with respect 
to the adaptivity iterations. Moreover, Fig. 14 also shows the 

number of computational nodes with respect to the adaptiv-
ity iteration.

4.2  The three‑dimensional Boussinesq’s problem

As a final benchmark problem we solve the three-dimen-
sional Boussinesq’s problem, where a concentrated normal 
traction acts on an isotropic half-space [66].

The problem has a closed form solution given in cylindri-
cal coordinates r, � and z as

where P is the magnitude of the concentrated force, � is the 
Poisson’s ratio, � is the Lamé parameter and R is the Eucle-
dian distance to the origin. The solution has a singularity at 
the origin, which makes the problem ideal for treatment with 
adaptive procedures. Furthermore, the closed form solution 
also allows us to evaluate the accuracy of the numerical 
solution.

In our setup, we consider only a small part of 
the problem, i.e. � = 0.1 away from the singularity, 
as schematically shown in Fig.  15. From a numeri-
cal point of view, we solve the Navier–Cauchy Equa-
tion (17) with Dirichlet boundary conditions described 
in  (21), where the domain Ω is defined as a box, i.e. 
Ω = [−1,−�] × [−1,−�] × [−1,−�].

Although the closed form solution is given in cylindri-
cal coordinate systems, the problem is implemented using 
cartesian coordinates. We employ the proposed mesh-
free hp-adaptive solution procedure where the shapes are 
computed with RBF-FD using the PHS with order k = 3 
and monomial augmentation restricted to choose between 
approximation orders m ∈ {2, 4, 6, 8} . Other hp-refinement 
related parameters are given in Table 3. For the physical 
parameters of the problem, the values P = −1 , E = 1 and 
� = 0.33 were assumed.

(21)
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4��
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z
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−
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R(z + R)

)
, u� = 0,
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P
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+
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)
,

�rr =
P

2�
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−

3r2z

R5

)
,

��� =
P(1 − 2�)

2�

(
z

R3
−

1

R(z + R)

)
,

�zz = −
3Pz3

2�R5
, �rz = −

3Prz2

2�R5
,

�r� = 0, ��z = 0,

Table 2  Adaptivity parameters 
used to obtain solution to 
fretting fatigue contact problem

�h �h �h �h �p �p �p �p hmax Nmax Niter

5 ⋅ 10−5 10−4 5 1.05 10−3 0.1 4 1.05 2.5 ⋅ 10−4 5 ⋅ 105 19
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It is worth mentioning, that the final sparse system 
was solved using BiCGSTAB with ILUT preconditioner 
(employed with an initial guess obtained from the previous 

adaptivity iteration), where the global tolerance was set to 
10−15 with a maximum number of 500 iterations and drop-
tolerance and fill-factor set to 10−6 and 60 respectively. 
Other possible choices and their effect on the solution pro-
cedure are further discussed in Sect. 4.2.2.

Example hp-refined numerical solution is given in 
Fig. 16. We can see that the proposed hp-adaptive solution 
procedure is sufficiently robust to obtain a good solution 
even for three-dimensional problems with singularities. 
Additionally, we also observe that the IMEX error indica-
tor successfully identified the singularity, effectively seen 
as an increase in the local field description in the neigh-
bourhood of the concentrated force applied at the origin.

Fig. 12  Example hp-refined fretting fatigue contact solution

Fig. 13  Surface traction 
under the contact for selected 
iteration steps demonstrat-
ing the hp-adaptivity process. 
Colours are used to denote the 
local approximation orders. 
Numerical solution is addi-
tionally compared against the 
Abaqus FEM solution, where 
the red line is used to denote the 
absolute difference between the 
two methods. For clarity, the 
two dashed green lines show the 
edge contact
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4.2.1  The von Mises stress along the body diagonal

Figure 17 shows further evaluation of the hp-refined mesh-
free numerical solution. Here, the von Mises stress at points 
near the body diagonal (−1,−1,−1) → (−�,−�,−�) is cal-
culated for selected 4 adaptivity iterations and compared to 
the analytical values in terms of relative error. In addition, 
the nodes are coloured according to the local approxima-
tion order enforced by the hp-adaptive solution procedure. 
We can see that the highest relative error of approximately 
0.3 at the initial state is observed in the neighbourhood of 
the origin. In the final iteration, the relative error is reduced 
by about an order of magnitude. We also see that the hp-
adaptive solution procedure has found a non-trivial order 
distribution and that the number of nodes in the neighbour-
hood of the corner (−�,−�,−�) has increased significantly.

A more quantitative analysis of the mesh-free solution 
is given in Fig. 18 where the �1 , �2 and �∞ error norms 
and number of computational nodes vs. adaptivity iteration 
are shown. Compared to the initial state, the hp-adaptive 
solution procedure was able to achieve a numerical solution 
that was almost two orders of magnitude more accurate. In 
the process, the number of computational nodes increased 
from 10 500 in the initial state to about 80 000 in the final 
iteration. However, it is interesting to observe that with 

the configuration from Table 3, none of the computational 
nodes used the approximation with the highest order allowed 
( m = 8 ). Instead, in the final iteration, there were 130 nodes 
approximated with m = 6 , and 5937 with m = 4 , while the 
rest were approximated with the second order. Note that, as 
expected, most of the higher order approximations are near 
the concentrated force—which is difficult to represent visu-
ally, so we only give the descriptive data.

For reference, we take the h-refined solution by Slak et al. 
[10], who were able to reduce the infinity norm error by 
about an order of magnitude with N ≈ 140 000 nodes in the 
final iteration. It is perhaps naive to compare this result with 
ours, since the authors use different marking and refinement 
strategies and, more importantly, a different error indica-
tor. Nevertheless, the infinity norm error of our hp-refined 
solution is in the neighbourhood of 10−3 compared to theirs 
at approximately 10−2 with almost twice as many com-
putational nodes. We believe our results could be further 
improved by fine-tuning the free parameters, but we decided 
to avoid such an approach.

4.2.2  Additional discussion on solving the global sparse 
system

In all previous sections, we have completely neglected the 
importance of solving the global sparse system in the pro-
posed hp-adaptive solution procedure with a suitable solver. 
However, inappropriate choice of solver can lead to inac-
curate or even unstable behaviour and, most importantly, 
unreasonably large computational cost. To avoid such flaws, 
we compared an iterative BiCGSTAB and BiCGSTAB with 
ILUT preconditioner with two direct solvers—namely the 
SparseLU and the PardisoLU—on a hp-adaptive solution to 
the Boussinesq problem, performing 25 adaptivity iterations 
with approximately 10,000 initial nodes and 135,000 nodes 
after the last iteration. Note that the iterative BiCGSTAB 
solver with ILUT preconditioner was employed with an ini-
tial guess obtained from the previous adaptivity iteration.

In addition to the discussed solvers, we also tried the 
SparseQR. While its stability and accuracy were compara-
ble to other solvers, its computational cost was significantly 
higher and was therefore removed from further analysis and 
from the list of potential candidates. For all performed tests 
we used the EIGEN linear algebra library [63].

Let us first examine the sparsity patterns of the systems 
assembled at different stages of the hp-adaptive process in 
Fig. 19, where we can see how the system increases in size 
and also becomes less sparse due to globally decreasing the 
internodal distance h and increasing the approximation order 
p. Additionally, the spectra of the matrices are shown in 
the bottom row of Fig. 19, where we can see that the ratios 
between the real and imaginary parts of the eigenvalues are 
in good agreement with previous studies [13, 14, 61].

Fig. 14  Mean surface traction difference between the two methods 
under the contact area

Fig. 15  Schematic presentation of Boussinesq’s problem
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Moreover, Fig. 20 presents three different views of the 
solvers’ performance: (i) the achieved accuracy of the final 
solution for different solvers, (ii) the number of iterations 
a solver needs to converge, and (iii) the execution times of 
each solver, each with respect to the hp-adaptive iterations. 
The differences in final accuracy for different solvers are 
marginal. Perhaps the BiCGSTAB shows better stability 
behaviour (in terms of error scatter) compared to others. 
Nevertheless, it is important to observe, that the SparseLU 
only works until the 15th iteration with approximately 
50 000 nodes, at which point our computer ran out of the 
available 12 Gb memory, which is to be expected due to the 
computational complexity or SparseLU. PardisoLU, on the 
other hand, remains stable through all adaptivity iterations.

Generally speaking, the number of iterations BiCG-
STAB needs to converge increases with hp-adaptivity itera-
tions due to the increasing non-zero elements in the global 
system. The BiCGSTAB with a ILUT precoditioner shows 
similar behaviour, but with approximately 2/3 less iterations 
required. Both direct solvers, of course, require only one 
“iteration”. Finally, the analysis of the execution time shows 
that the PardisoLU solver is by far the most efficient among 
all considered candidates.

With all things considered, PardisoLU seems to be the 
the best candidate for hp-adaptive solution procedure. How-
ever, the last adaptivity iteration with approximately 115,000 
nodes was coincidentally right at the limit of the available 
12 Gb RAM memory—using approximately 10.5 Gb. It is 
therefore expected that like SparseLU, the PardisoLU would 
soon run out of memory for larger domains. To avoid such 
problems, we chose to work with a general purpose iterative 
BiCGSTAB solver with ILUT preconditioner employed with 
an initial guess, since it shows slightly better computational 
efficiency than the pure BiCGSTAB and required only 7.5 
Gb of RAM for approximately 135,000 nodes in the final 
adaptivity iteration.

Table 3  Adaptivity parameters 
used to obtain solution to 
Boussinesq’s problem

�h �h �h �h �p �p �p �p hmax Nmax Niter

10−3 10−3 3.75 1.01 10−4 10−2 3 1.5 0.04 7 ⋅ 104 20

Fig. 16  Example hp-refined 
numerical solution to Boussin-
esq’s problem

Fig. 17  Numerical solution compared to analytical solution at the 
nodes near the body diagonal (−1,−1,−1) → (−�,−�,−�) for 
selected iterations

Fig. 18  Convergence of numerical solution along with number of 
computational nodes
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5  Conclusions

In this paper we establish a baseline for hp strong form 
mesh-free analysis. We have formulated and implemented a 
hp-adaptive solution procedure and demonstrated its perfor-
mance in three different numerical experiments.

The cornerstone of the presented hp-adaptive method is 
an iterative solve–estimate–mark–refine paradigm with the 
modified Texas Three Step marking strategy. The h-refine of 
the proposed method relies on an advancing front node posi-
tioning algorithm based on Poisson disc sampling, which 
enables dimension-independent node generation support-
ing spatially variable density distributions. For the adaptive 
order of the method, we exploit an elegant control over the 
order of the approximation via the augmenting monomials 
in the approximation basis.

We proposed an IMEX error indicator, where the implicit 
solution of the problem is processed with the higher order 

local explicit representation of PDE at hand, e.g. if the 
implicit solution is computed with a second order approxi-
mation, the explicit re-evaluation happens at fourth order. 
Our analyses show that the proposed error indicator suc-
cessfully captures main characteristics of error distributions, 
which suffices for the proposed iterative adaptivity.

The proposed hp-adaptive solution procedure is first 
demonstrated on a two-dimensional Poisson problem with 
exponential source and mixed boundary conditions. Further 
demonstration focuses on linear elasticity problems. First, 
a 2D fretting fatigue problem – a contact problem with 
pronounced peaks in the surface stress, and second, a 3D 
Boussinesq’s problem with stress singularity. In both cases, 
we have demonstrated the advantages of using the proposed 
hp-adaptive approach.

Although the hp-adaptivity introduces additional steps in 
the solution procedure and is therefore undoubtedly compu-
tationally more expensive per node than the non-adaptive 

Fig. 19  Global sparse matrix 
plot (top row) and spectra of 
the matrices (bottom row) at 
three selected iterations of the 
hp-adaptive solution proce-
dure. Note that the spectra are 
computed for the BiCGSTAB 
solver with an ILUT precondi-
tioning using an estimate from 
the previous iteration

Fig. 20  Error of the final solu-
tion with respect to the adaptiv-
ity iteration for different solvers 
(left), number of solver iteration 
per adaptivity iteration (centre) 
and solver compute time for 
each adaptivity iteration (right)
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approach, it is essential in problems that exhibit volatilities 
in solution in small regions of the domain. For example sin-
gularity in the contact problem require excessively detailed 
numerical analysis near the contact compared to the rest 
(the bulk) of the domain. Such cases are extremely difficult 
(or even impossible) to solve without adaptivity, since the 
minimal uniform h and p distribution required to capture 
these volatilities would lead to unreasonably high computa-
tional complexity. In cases of a smooth solution, however, 
the benefits of hp-adaptivity in most cases do not justify its 
computational overheads.

We are aware that there are many opportunities for 
improvement of presented methodology. The IMEX error 
indicator needs further clarification. Other error indicators 
should also be implemented and tested. During our experi-
ments, we have found that a marking strategy with more free 
parameters leads to better accuracy, but is also more diffi-
cult to understand and control and can be case dependent. A 
smarter and more effective refinement and marking strate-
gies are certainly part of future work. These should possibly 
take into account more information about the method itself, 
e.g. the dependence of the computational complexity on the 
approximation order, and most importantly local data regu-
larity to choose between p and h refinement.

One of our goals in future work is also generalisation 
of the presented hp-adaptive solution procedure to time-
dependent problems. The most straightforward approach 
to achieve that is to granularly adapt h and p throughout 
the simulation. In its simplest form, the proposed hp-adap-
tivity would be performed at each time step, starting with 
the hp distributions of the previous time step and using 
the same adaptivity parameters for all time steps. A more 
sophisticated approach would also take into account the 
desired accuracy during the simulation, resulting in time-
dependent adaptivity parameters. For example, if one is only 
interested in a steady state solution, the desired accuracy 
would increase with time, reaching its maximum at steady 
state. Additionally, to perform proper adaptive analysis, the 
time step should also be adaptive, which requires an addi-
tional step in the hp-adaptive solution procedure.

Acknowledgements  . The authors acknowledge the financial support 
from the Slovenian Research and Innovation Agency (ARIS) research 
core funding No. P2-0095, and research projects No. J2-3048 and No. 
N2-0275 (joint research project between National Science Centre, 
Poland and ARIS, where Polish research group is Funded by National 
Science Centre, Poland under the OPUS call in the Weave programme 
2021/43/I/ST3/00228. This research was funded in whole or in part 
by National Science Centre (2021/43/I/ST3/00228). For the purpose 
of Open Access, the author has applied a CC-BY public copyright 
licence to any Author Accepted Manuscript (AAM) version arising 
from this submission.).

Declarations 

 Conflict of interest The authors declare that they have no conflict of 
interest. All the co-authors have confirmed to know the submission of 
the manuscript by the corresponding author.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Upadhyay BD, Sonigra SS, Daxini SD (2021) Numerical analysis 
perspective in structural shape optimization: a review post 2000. 
Adv Eng Softw 155:102,992

 2. Mitchell WF, McClain MA (2014) A comparison of hp-adaptive 
strategies for elliptic partial differential equations. ACM Trans 
Math Softw (TOMS) 41(1):1–39

 3. Segeth K (2010) A review of some a posteriori error estimates for 
adaptive finite element methods. Math Comput Simul 80(8):1589–
1600. https:// doi. org/ 10. 1016/j. matcom. 2008. 12. 019. https:// 
www. scien cedir ect. com/ scien ce/ artic le/ pii/ S0378 47540 80042 
30. ESCO 2008 Conference

 4. Liu GR, Gu YT (2005) An introduction to meshfree methods and 
their programming. Springer, Berlin

 5. Liu GR (2002) Mesh free methods: moving beyond the finite ele-
ment method. CRC Press, Boca Raton. https:// doi. org/ 10. 1201/ 
97814 20040 586

 6. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element 
method: its basis and fundamentals. Elsevier, Amsterdam

 7. van der Sande K, Fornberg B (2021) Fast variable density 3-d 
node generation. SIAM J Sci Comput 43(1):A242–A257

 8. Shankar V, Kirby RM, Fogelson AL (2018) Robust node genera-
tion for mesh-free discretizations on irregular domains and sur-
faces. SIAM J Sci Comput 40(4):A2584–A2608

 9. Jacquemin T, Suchde P, Bordas SP (2023) Smart cloud collo-
cation: geometry-aware adaptivity directly from CAD. Comput 
Aided Design 154:103409. https:// doi. org/ 10. 1016/j. cad. 2022. 
103409. https:// linki nghub. elsev ier. com/ retri eve/ pii/ S0010 44852 
20014 27

 10. Slak J, Kosec G (2019) Adaptive radial basis function-generated 
finite differences method for contact problems. Int J Numer Meth-
ods Eng 119(7):661–686

 11. Davydov O, Oanh DT (2011) Adaptive meshless centres and rbf 
stencils for poisson equation. J Comput Phys 230(2):287–304

 12. Jacquemin T, Bordas SPA (2021) A unified algorithm for the 
selection of collocation stencils for convex, concave, and singular 
problems. Int J Numer Methods Eng 122(16):4292–4312

 13. Jančič M, Slak J, Kosec G (2021) Monomial augmentation guide-
lines for rbf-fd from accuracy versus computational time perspec-
tive. J Sci Comput 87(1):1–18

80 Chapter 3. hp-Adaptive Solution Procedure



 Engineering with Computers

1 3

 14. Bayona V, Flyer N, Fornberg B, Barnett GA (2017) On the role 
of polynomials in rbf-fd approximations: Ii. numerical solution of 
elliptic pdes. J Comput Phys 332:257–273

 15. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) 
Meshless methods: an overview and recent developments. Comput 
Methods Appl Mech Eng 139(1–4):3–47

 16. Kosec G, Šarler B (2014) Simulation of macrosegregation with 
mesosegregates in binary metallic casts by a meshless method. 
Eng Anal Bound Elements 45:36–44. https:// doi. org/ 10. 1016/j. 
engan abound. 2014. 01. 016. https:// linki nghub. elsev ier. com/ retri 
eve/ pii/ S0955 79971 40002 90

 17. Maksić M, Djurica V, Souvent A, Slak J, Depolli M, Kosec G 
(2019) Cooling of overhead power lines due to the natural convec-
tion. Int J Electrical Power Energy Syst 113:333–343. https:// doi. 
org/ 10. 1016/j. ijepes. 2019. 05. 005. https:// linki nghub. elsev ier. com/ 
retri eve/ pii/ S0142 06151 83400 55

 18. Gui Wz, Babuska I (1985) The h, p and hp versions of the finite 
element method in 1 dimension. part 3. the adaptive hp version. 
Tech. rep., Maryland Univ College Park Lab for Numerical 
Analysis

 19. Gui WZ, Babuška I (1986) The h, p and hp versions of the finite 
element method in 1 dimension. part ii. the error analysis of the h 
and hp versions. Numerische Mathematik 49(6):613–657

 20. Devloo12 PR, Bravo CM, Rylo EC (2012) Recent developments 
in hp adaptive refinement

 21. Zienkiewicz OC, Zhu JZ (1987) A simple error estimator and 
adaptive procedure for practical engineerng analysis. Int J Numer 
Methods Eng 24(2):337–357

 22. González-Estrada OA, Natarajan S, Ródenas JJ, Bordas SP 
(2021) Error estimation for the polygonal finite element method 
for smooth and singular linear elasticity. Comput Math Appl 
92:109–119

 23. Thimnejad M, Fallah N, Khoei AR (2015) Adaptive refinement 
in the meshless finite volume method for elasticity problems. 
Comput Math Appl 69(12):1420–1443. https:// doi. org/ 10. 1016/j. 
camwa. 2015. 03. 023

 24. Angulo A, Pozo LP, Perazzo F (2009) A posteriori error estima-
tor and an adaptive technique in meshless finite points method. 
Eng Anal Bound Elements 33(11):1322–1338. https:// doi. org/ 
10. 1016/j. engan abound. 2009. 06. 004

 25. Oanh DT, Davydov O, Phu HX (2017) Adaptive rbf-fd method 
for elliptic problems with point singularities in 2d. Appl Math 
Comput 313:474–497

 26. Sang-Hoon P, Kie-Chan K, Sung-Kie Y (2003) A posterior error 
estimates and an adaptive scheme of least-squares meshfree 
method. Int J Numer Methods Eng 58(8):1213–1250. https:// 
doi. org/ 10. 1002/ nme. 817

 27. Afshar M, Naisipour M, Amani J (2011) Node moving adaptive 
refinement strategy for planar elasticity problems using discrete 
least squares meshless method. Finite Element Anal Design 
47(12):1315–1325

 28. Guo B, Babuška I (1986) The hp version of the finite element 
method. Comput Mech 1(1):21–41

 29. Mitchell WF (2016) Performance of hp-adaptive strategies for 
3d elliptic problems

 30. Tinsley Oden J, Wu W, Ainsworth M (1995) In: Modeling, mesh 
generation, and adaptive numerical methods for partial differ-
ential equations (Springer), pp 347–366

 31. Ainsworth M, Senior B (1997) Aspects of an adaptive hp-finite 
element method: adaptive strategy, conforming approxima-
tion and efficient solvers. Comput Methods Appl Mech Eng 
150(1–4):65–87

 32. Houston P, Senior B, Süli E (2003) In: Numerical mathematics 
and advanced applications (Springer), pp 631–656

 33. Houston P, Süli E (2005) A note on the design of hp-adaptive 
finite element methods for elliptic partial differential equations. 
Comput Methods Appl Mech Eng 194(2–5):229–243

 34. Eibner T, Melenk JM (2007) An adaptive strategy for hp-fem 
based on testing for analyticity. Comput Mech 39(5):575–595

 35. Bürg M, Dörfler W (2011) Convergence of an adaptive hp finite 
element strategy in higher space-dimensions. Appl Numer Math 
61(11):1132–1146

 36. Demkowicz L, Rachowicz W, Devloo P (2002) A fully auto-
matic hp-adaptivity. J Sci Comput 17(1):117–142

 37. Rachowicz W, Pardo D, Demkowicz L (2006) Fully automatic 
hp-adaptivity in three dimensions. Comput Methods Appl Mech 
Eng 195(37–40):4816–4842

 38. Benito J, Urena F, Gavete L, Alvarez R (2003) An h-adaptive 
method in the generalized finite differences. Comput Methods 
Appl Mech Eng 192(5–6):735–759

 39. Liu G, Kee BB, Chun L (2006) A stabilized least-squares radial 
point collocation method (ls-rpcm) for adaptive analysis. Com-
put Methods Appl Mech Eng 195(37–40):4843–4861

 40. Hu W, Trask N, Hu X, Pan W (2019) A spatially adaptive high-
order meshless method for fluid-structure interactions. Comput 
Methods Appl Mech Eng 355:67–93

 41. Tolstykh A, Shirobokov D (2003) On using radial basis func-
tions in a “finite difference mode’’ with applications to elasticity 
problems. Comput Mech 33(1):68–79

 42. Oanh DT, Tuong NM (2022) An approach to adaptive refine-
ment for the rbf-fd method for 2d elliptic equations. Appl 
Numer Math 178:123–154

 43. Tóth B, Düster A (2022) h-adaptive radial basis function finite 
difference method for linear elasticity problems. Comput 
Mech:1–20

 44. Fan L (2019) Adaptive meshless point collocation methods: 
investigation and application to geometrically non-linear solid 
mechanics. Ph.D. thesis, Durham University

 45. Mishra PK, Ling L, Liu X, Sen MK (2020) Adaptive radial basis 
function generated finite-difference (rbf-fd) on non-uniform 
nodes using p-refinement. arXiv preprint arXiv: 2004. 06319

 46. Milewski S (2021) Higher order schemes introduced to the 
meshless fdm in elliptic problems. Eng Anal Bound Elements 
131:100–117

 47. Albuquerque-Ferreira A, Ureña M, Ramos H (2021) The general-
ized finite difference method with third-and fourth-order approxi-
mations and treatment of ill-conditioned stars. Eng Anal Bound 
Elements 127:29–39

 48. Liszka T, Duarte C, Tworzydlo W (1996) hp-meshless cloud 
method. Computer Methods Appl Mech Eng 139(1–4):263–288

 49. Jančič M, Slak J, Kosec G (2021) In: 2021 6th International Con-
ference on Smart and Sustainable Technologies (SpliTech), pp 
01–06. https:// doi. org/ 10. 23919/ SpliT ech52 315. 2021. 95664 01

 50. Duarte CA, Oden JT (1996) An hp adaptive method using clouds. 
Computer Methods Appl Mech Eng 139(1–4):237–262

 51. Slak J, Kosec G (2019) On generation of node distribu-
tions for meshless pde discretizations. SIAM J Sci Comput 
41(5):A3202–A3229

 52. Slak J, Kosec G (2021) Medusa: a c++ library for solving pdes 
using strong form mesh-free methods. ACM Trans Math Softw 
(TOMS) 47(3):1–25

 53. Depolli M, Slak J, Kosec G (2022) Parallel domain discretization 
algorithm for RBF-FD and other meshless numerical methods for 
solving PDEs. Comput Struct 264:106773. (Publisher: Elsevier)

 54. Duh U, Kosec G, Slak J (2021) Fast variable density node genera-
tion on parametric surfaces with application to mesh-free meth-
ods. SIAM J Sci Comput 43(2):A980–A1000

 55. Wendland H (2004) Scattered data approximation. Cambridge 
Monographs on Applied and Computational Mathematics. 

3.3. Strong-Form Mesh-Free hp-Adaptive Solution of Linear Elasticity Problem 81



Engineering with Computers 

1 3

Cambridge University Press, Cambridge. https:// doi. org/ 10. 1017/ 
CBO97 80511 617539

 56. Davydov O, Oanh DT, Tuong NM (2023) Improved stencil selec-
tion for meshless finite difference methods in 3d. J Comput Appl 
Math 425:115031. https:// doi. org/ 10. 1016/j. cam. 2022. 115031. 
https:// www. scien cedir ect. com/ scien ce/ artic le/ pii/ S0377 04272 
20062 9X

 57. Jančič M, Strniša F, Kosec G (2022) In: 2022 7th International 
Conference on Smart and Sustainable Technologies (SpliTech), 
pp 01–04. https:// doi. org/ 10. 23919/ SpliT ech55 088. 2022. 98543 42

 58. Heuer N, Mellado ME, Stephan EP (2001) hp-adaptive two-level 
methods for boundary integral equations on curves. Computing 
67(4):305–334

 59. Bayona V (2019) An insight into rbf-fd approximations aug-
mented with polynomials. Comput Math Appl 77(9):2337–2353

 60. Tominec I, Larsson E, Heryudono A (2021) A least squares radial 
basis function finite difference method with improved stability 
properties. SIAM J Sci Comput 43(2):A1441–A1471. https:// doi. 
org/ 10. 1137/ 20M13 20079

 61. Bayona V (2019) Comparison of moving least squares and rbf+ 
poly for interpolation and derivative approximation. J Sci Comput 
81(1):486–512

 62. Daniel P, Ern A, Smears I, Vohralík M (2018) An adaptive hp-
refinement strategy with computable guaranteed bound on the 
error reduction factor. Comput Math Appl 76(5):967–983

 63. Guennebaud G, Jacob B, et al (2010) Eigen v3. http:// eigen. tuxfa 
mily. org

 64. Wakeni MF, Aggarwal A, Kaczmarczyk L, McBride AT, Atha-
nasiadis I, Pearce CJ, Steinmann P (2022) A p-adaptive, implicit-
explicit mixed finite element method for diffusion-reaction prob-
lems. Int J Numer Methods Eng

 65. Kosec G, Slak J, Depolli M, Trobec R, Pereira K, Tomar S, Jac-
quemin T, Bordas SP, Wahab MA (2019) Weak and strong from 
meshless methods for linear elastic problem under fretting contact 
conditions. Tribol Int 138, 392–402. (Publisher: Elsevier)

 66. Slaughter WS (2002) Three-dimensional problems. 
Birkhäuser, Boston, pp 331–386. https:// doi. org/ 10. 1007/ 
978-1- 4612- 0093-2_9

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

82 Chapter 3. hp-Adaptive Solution Procedure



83

Chapter 4

Spatially-Adaptive Approximation
Methods

Stencil-size-effect observations from Section 2.2 suggest that a spatially-varying stencil
could be beneficial for both the accuracy of the numerical solution and computational
complexity of the solution procedure. This has already been studied by Liszka et al. [102] in
their attempt of hp-adaptive meshless solution procedure, where they proposed to spatially-
vary the stencil size to improve the local accuracy of the numerical solution.

Built on Liszka’s idea, this chapter explores the concept of spatially-varying approxima-
tion methods aimed to improve one or more aspects toward efficient PDE-solving solution
procedures. We exploit the advantages of local approximation and test the performance of
the solution procedure when the approximation method, and correspondingly the stencil
size, is spatially-variable.

Based on the stability analysis from Section 2.3 we propose a hybrid WLS–RBF-FD ap-
proximation method in Section 4.1 exploiting the stability of RBF-FD and computational
efficiency of WLS on scattered nodes. A step further is done in Section 4.2, where we pro-
pose a spatially-variable node regularity and a corresponding spatially-variable combination
of RBF-FD on scattered nodes and MON on uniform nodes reducing the computational
complexity even further.

4.1 A Hybrid RBF-FD and WLS Mesh-Free Strong-Form
Approximation Method

To improve the computational efficiency, we propose a solution procedure with spatially-
variable approximation method – employing a different approximation method in different
domain regions, depending on the complexity of the underlying problem and geometrical
properties. For instance, a more stable method (e.g. RBF-FD) can be used in areas that are
possibly detrimental from a stability point of view, while computationally less demanding
method (e.g. WLS) can be used in the rest of the domain. Such procedure yields shorter
wall-clock times and minimally affects the accuracy of the numerical solution and stability
of the solution procedure.

Contributions.
This section represents contribution C8. We show that spatially-varying the approximation
method has desirable effects on the stability of the solution procedure.

Addressed hypotheses.
The analyses from the following publication again demonstrate the superiority of high-
order RBF-FD approximation method, confirming hypothesis H2. We also demonstrate
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that a hybrid WLS–RBF-FD approximation method can result in a more stable solution
procedure, compared to that employing a pure WLS approximation, and computationally
cheaper, compared to that employing a pure RBF-FD approximation. The latter observa-
tion confirms hypothesis H7.

Publications included in this section:

• M. Jančič and G. Kosec, “A hybrid RBF-FD and WLS mesh-free strong-
form approximation method,” in 2022 7th International Conference on Smart
and Sustainable Technologies (SpliTech), 2022, pp. 1–6. doi: 10 . 23919 /
SpliTech55088.2022.9854278

Regarding my contribution: I made a literature overview of the topic, implemented
the solution procedure, planned and executed the analyses and jointly prepared the
manuscript with co-authors.

https://doi.org/10.23919/SpliTech55088.2022.9854278
https://doi.org/10.23919/SpliTech55088.2022.9854278
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Abstract—Since the advent of mesh-free methods as a tool for
the numerical analysis of systems of Partial Differential Equa-
tions (PDEs), many variants of differential operator approxima-
tion have been proposed. In this work, we propose a local mesh-
free strong-form method that combines the stability of Radial
Basis Function-Generated Finite Differences (RBF-FD) with the
computational effectiveness of Diffuse Approximation Method
(DAM), forming a so-called hybrid method. To demonstrate the
advantages of a hybrid method, we evaluate its computational
complexity and accuracy of the obtained numerical solution by
solving a two-dimensional Poisson problem with an exponentially
strong source in the computational domain. Finally, we employ
the hybrid method to solve a three-dimensional Boussinesq’s
problem on an isotropic half-space and show that the imple-
mentation overhead can be justified.

Index Terms—mesh-free methods, hybrid, RBF-FD, WLS,
strong-form

I. INTRODUCTION

In recent years, mesh-free methods [1] have been increas-
ingly used to obtain a numerical solution to a system of PDEs.
They are computationally more complex than traditional mesh-
based methods, but the fact that they can operate on scattered
nodes makes them very desirable, especially when complex
three-dimensional domains are considered.

Since the advent of mesh-free methods in the 1970s, many
different variants have been proposed, such as the Finite Point
Method [2], the Generalized Finite Difference Method [3], the
Diffuse Approximation Method (DAM) [4] and the Radial
Basis Function-Generated Finite Differences (RBF-FD) [5],
to name but a few of the most commonly used, with recent
research exploiting parallelism opportunities offered by a
modern computer architecture [6].

While the RBF-FD is known for its high stability, DAM,
also known as the Weighted Least Squares (WLS) approach,
is known for its low computational complexity. Moreover, the
WLS approach has been shown to be incredibly stable for
low order approximations but has stability issues for higher

The authors would like to acknowledge the financial support of the ARRS
research core funding No. P2-0095, ARRS project funding No. J2-3048 and
the World Federation of Scientists.

order approximations [7]. On the contrary, the RBF-FD is
stable even for higher order approximations. Thus, the aim
of this paper is to combine the advantages of the RBF-FD
variant (namely the stability) with the computationally efficient
WLS variant by proposing a novel hybrid WLS – RBF-FD
method. This method essentially splits the stencils into two
separate sets: One that use the WLS approximation approach
to approximate the differential operators and another one, that
uses the RBF-FD approximation approach.

The stability and computational complexity of the proposed
hybrid method are studied on a solution to a two-dimensional
Poisson problem with an exponentially strong source [8]. In
addition, we also provide a solution to a three-dimensional
Boussinesq’s problem of the concentrated normal traction
acting on an isotropic half-space [9], [10]. We show that the
hybrid method is more stable than the pure WLS variant and
computationally cheaper than the pure RBF-FD variant.

II. SOLUTION PROCEDURE EMPLOYING MESH-FREE
METHODS

To obtain a numerical solution û to a system of PDEs,
three steps are required. First, the computational domain Ω
is discretized using a dedicated node positioning algorithm
that supports a spatially variable nodal distribution [11] with
a quasi-uniform internodal spacing h. An example of nodal
distribution is shown in Figure 1. A parallelized version of
the same algorithm was recently published in [12], however,
parallel execution is already out of the scope of this paper.

After discretizing the domain, the differential operators are
approximated. A detailed procedure on differential operator
approximation in the context of mesh-free methods is de-
scribed in the following Section III.

In the final step, the system of PDEs is discretized in spatial
and temporal sense, resulting in a global system of linear
equations. The system is solved and its solution is proclaimed
as the numerical solution û of a considered system of PDEs,
of course, subject to given initial and boundary conditions.

Authorized licensed use limited to: Institute Jozef Stefan. Downloaded on November 29,2022 at 13:10:24 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 1. An example of numerical solution of a Poisson problem on scattered
nodes.

III. LINEAR DIFFERENTIAL OPERATOR APPROXIMATION IN
THE CONTEXT OF MESH-FREE METHODS

Consider a d-dimensional domain Ω ⊂ Rd with a set of
N discretization points {xj}Nj=1. In the context of mesh-free
methods, a linear differential operator L in any node xc ∈ Ω
is approximated over a set of neighboring nodes

L̂u(xc) =
n∑

i=1

wiu(xi) (1)

for an arbitrary function u, weights wi yet to be determined
and support domain size n also called stencil size. It has been
reported that a well-designed stencil can significantly reduce
the computational cost [13], but, usually, as is also the case
in this paper, the closest n nodes are chosen as the stencil to
a central node xc.

The weights from equation (1) are calculated for a given set
of s basis functions {pj}sj=1. In the Diffuse Approximation
Method, a set of monomials p1, . . . , ps with up to and includ-
ing degree m with s =

(
m+d
d

)
are used as the approximation

basis. This essentially means that the approximation (1) can
be compactly written as

Pw = ℓp, (2)

where matrix P is a n× s matrix of monomials evaluated at
stencil nodes,

P =

p1(x1) · · · ps(x1)
...

. . .
...

p1(xn) · · · ps(xn)

 (3)

and ℓp is the vector of values assembled by applying the
considered operator L to the monomials at a central point
xc

ℓip = (Lpi(x))
∣∣
x=xc

. (4)

When the number of basis functions is equal to the stencil
size (s = n), the described formulation yields a quadratic

system of equations. Experience shows that the choice of
larger support sizes (n > s) can be advantageous for accuracy
and stability reasons. This leads to an overdetermined linear
system, which is usually treated as a minimization of the
Weighted Least Squares (WLS) norm. In the remainder of
this paper, the above approximation approach, using only
monomials as basis functions, will be referred to as the WLS
approximation approach or WLS method.

Note that the same approximation procedure (1) can also
be used for any other commonly chosen basis functions, such
as Multiquadrics, Gaussians, Radial Basis Functions (RBFs).
In this paper we focus on two different types of basis: the
already presented approach with monomials only and the
approach using Polyharmonic Splines (PHS) augmented with
monomials. The latter leads to a RBF-FD variant of the mesh-
free methods described in the following section.

A. The mesh-free RBF-FD variant

We now take RBFs φ(x) = φ(∥x− xc∥) centered at the
stencil nodes of a central node xc. The approximation (1) then
takes a compact form

Φw = ℓφ (5)

for matrix Φ of evaluated radial basis functions

Φ =

φ(∥x1 − x1∥) · · · φ(∥xn − x1∥)
...

. . .
...

φ(∥x1 − xn∥) · · · φ(∥xn − xn∥)

 (6)

and ℓφ is the vector of values assembled by applying the
considered operator L to the RBFs at central point xc

ℓiφ = (Lφ(∥x− xi∥)
∣∣
x=xc

. (7)

Different RBFs can be used. To avoid the dependency on a
shape parameter, we choose Polyharmonic splines (PHS)

φ(r) =

{
rk, k odd
rk log r, k even

, (8)

where r denotes the Eucledian distance between two nodes.
However, the approximation with a pure RBF basis guarantees
neither convergent behavior nor solvability. To mitigate these
problems, the approximation is augmented with a monomial
basis by additionally enforcing an exactness constraint for
monomials, as we did in equation (2). This ensures convergent
behavior and also allows us to control the order of the
approximation, since the approximation order is the same as
the order of the augmented monomials. This procedure finally
results in a compactly written system[

Φ P

PT 0

] [
w
λ

]
=

[
ℓφ
ℓp

]
(9)

with Lagrangian multipliers λ. The system (9) is overdeter-
mined and treated as a constraint optimization problem [14].
The weights are obtained by solving the system, while La-
grangian multipliers are discarded.
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B. Hybrid WLS–RBF-FD approximation approach

The local RBF-FD systems (9) are clearly larger than the
purely monomial systems (2), making the RBF-FD method
computationally more expensive. Therefore, our aim is to
combine the computational efficiency of WLS approach with
the high stability of RBF-FD variant to a create a novel hybrid
method.

The hybrid method has an additional step in the solution
procedure, where we need to specify which stencils N (xi) use
the WLS approach to approximate the differential operators
and which the RBF-FD. This step essentially splits the N
discretization nodes of Ω into two parts: NWLS nodes whose
stencils use WLS and N RBF-FD nodes whose stencils use RBF-
FD, where N RBF-FD +NWLS = N .

Assigning a particular approximation type to a particular
stencil is not a trivial task. The aim of a hybrid method is to
ultimately result in numerical method that is more stable than
the pure WLS and computationally less complex than the pure
RBF-FD. Therefore, the RBF-FD approximation is naively
assigned only to nodes with a high error of the numerical
solution û expectancy, while the rest are approximated with
the WLS approach.

Normally, error indicators, such as ZZ-type [15], are used
in such cases. Although using an error indicator makes the
most sense and would probably lead to better results, in this
paper we make the decision a priori.

From an implementation point of view, only a small amount
of overhead is required to implement a hybrid method. The
biggest and practically only extra effort we have is when a
global system is being assembled, because the sizes of WLS
local systems (2) and RBF-FD local systems (9) do not match.
Additional zero values have to be assigned in the global
matrix to compensate for the mismatching sizes of the local
approximations.

Note on the implementation

All elements and corresponding functionality used in this
paper are available as part of the Medusa library [16].

IV. RESULTS

In this section, an overview of the results is provided. We
first study the proposed hybrid method on a two-dimensional
Poisson problem with an exponentially strong source in the
domain. In particular, we focus on the convergence rates
and shape computation times. Finally, as a proof of concept,
a three-dimensional Boussinesq’s problem is solved in Sec-
tion IV-B.

All calculations were performed on a single core of a com-
puter with Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz
processor and 64 GB of DDR4 memory. The code1 was com-
piled with g++ (GCC) 9.3.0 for Linux with -O3 -DNDEBUG
flags. The sparse system is solved using the single-threaded
LU solver, unless otherwise specified.

1Source code is available at https://gitlab.com/e62Lab/public/
cp-2022-splitech-hybrid-engine under the tag v1.1.

A. Two-dimensional synthetic example

The proposed hybrid method is studied by solving a syn-
thetic example. We choose a two-dimensional elliptic PDE
problem, i.e. a d = 2 dimensional Poisson problem, with
non-constant Dirichlet boundary conditions in domain Ω. This
example is usually used to test adaptive algorithms [8].

The problem is governed by

∇2u(x) = flap(x) in Ω, (10)
u(x) = f(x) on ∂Ω, (11)

where the domain Ω is a two-dimensional unit disc and the
right-hand side is chosen to have an exponentially strong
source

f(x) = exp(−α ∥x− xs∥2), (12)

where α determines the strength of the source (for a strong
source α = 103) and xs = 1/2 is the location of the source.
The Laplacian of f(x) can also be calculated analytically

flap = 4(α2 ∥x− xs∥2 − α) exp(−α ∥x− xs∥2). (13)

An example solution is shown in Figure 1. The above
problem has an analytical solution u(x) = f(x), which
allows us to evaluate the accuracy of the numerically obtained
solution û in terms of the infinity norm error e∞.

The domain Ω was filled with N scattered nodes with
a variable node distribution that ensures the best local field
description in the neighborhood of the strong source. In this
work, the nodal distribution is given by

h(x) = min(dx+ (Dx− dx) ∥x− xs∥3/2 , dx), (14)

for dx = Dx/5 and 30 different values of Dx.
The problem was solved using all three previously described

mesh-free variants, i.e. with the WLS approach using only
monomials up to and including degree m ∈ {2, 4, 6}, with the
RBF-FD approach using Polyharmonic splines of order k = 5
additionally augmented with monomials up to and including
the same order m, and finally with a hybrid WLS–RBF-FD
with the same approximation order. The stencil size n was
determined according to the recommendations of Bayona [17]
for a stable RBF-FD approximation

n = 2

(
m+ d

d

)
. (15)

The division of the nodes into NRBF-FD RBF-FD nodes and
NWLS WLS nodes was done a priori without an error indicator.
The largest error of the numerical solution is expected in the
neighborhood of the exponentially strong source. We therefore
define a circle with radius rs = 0.15 around the strong source
xs. All the stencils with a central node xc less than rs from
the source are approximated using the more stable RBF-FD
approach, while the rest use the WLS approximation. An
example of the distribution of approximation types within the
hybrid method is shown in Figure 2.
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Fig. 2. An example of different approximation methods used within the hybrid
WLS–RBF-FD method.

1) Convergence rates: In this paper, the error of the nu-
merical solution is evaluated in computational nodes in terms
of the infinity norm

e∞ =
∥û− u∥∞
∥u∥∞

, ∥u∥∞ = max
i=1,...,N

(16)

because it shows the lowest convergence rates and, unlike
the 2-norm, does not require averaging. After the solution
is obtained, the computational nodes are discarded and the
domain is discretized again with the same internodal spacing
function h. With the new discretization, the shapes must
be recomputed, which essentially allows us to evaluate the
dependence of the approximation method on the quality of the
node positioning. The process is repeated Nruns = 100 times,
every time resulting in an approximately the same number of
discretization nodes N .

The convergence zones for three different approximation
orders and three different mesh-free variants are shown in
Figure 3. In the case of a low order approximation (m = 2), we
can immediately see that all three approximation methods are
stable, with the smallest spread around a median of the infinity
error norm clearly belonging to the WLS approach. The fact
that the lower order WLS approximations are more stable with
the WLS variant was already observed by Jančič [7]. Higher
order approximations (m = 4 and m = 6), however, are more
stable with the RBF-FD. The stability is further evaluated in
Figure 4, making the advantages of a hybrid method in case
of a higher order approximation even more evident.

2) Computational times: Another advantage of the hybrid
method is that it is computationally cheaper than the pure
RBF-FD approximation. This is demonstrated in Figure 5,
showing the average shape calculation time for 10 runs.
We can clearly see that the pure RBF-FD approximation
is computationally expensive, while the WLS approach is

computationally more efficient and the hybrid method is
somewhere in-between - depending on the NRBF-FD/N ratio.

B. Benchmark example

As a benchmark case, we chose to solve a three-dimensional
Boussinesq’s problem of the concentrated normal traction
acting on an isotropic half-space [9], [10]. The problem is
governed by the Cauchy-Navier equations

(λ+ µ)∇(∇ · u) + µ∇2u = f (17)

with unknown displacement vector u, external body force f
and Lamé parameters

λ =
Eν

(1− 2ν)/(1 + ν)
and (18)

µ =
E

2(1 + ν)
, (19)

for Young modulus E = 1 and Poisson ratio ν = 0.33.
For domain Ω we take a three-dimensional box

Ω =
{
(x, y, z) ∈ R3,−0.1 ≤ (x, y, z) ≥ −1

}
(20)

and discretize it using h-refinement towards the corner xs =
(−0.1,−0.1,−0.1) where force P with magnitude 1 in the
−êz direction is applied. The discretization resulted in a total
of N = 18849 discretization points.

The problem has a closed form solution [9] for displace-
ments u(x) = u(x, y, z)

ux(x) = x
P

4πµ

(
z

∥x∥3
− 1− 2ν

∥x∥ (∥x∥+ z)

)
(21)

uy(x) = y
P

4πµ

(
z

∥x∥3
− 1− 2ν

∥x∥ (∥x∥+ z)

)
(22)

uz(x) =
P

4πµ

(
z2

∥x∥3
+

2(1− ν)

∥x∥3

)
(23)

allowing us to calculate the infinity norm error in terms of the
displacement magnitude.

To solve the sparse system, BiCGSTAB with ILUT precon-
ditioner was used. The global tolerance was set to 10−14 with
a maximum number of 500 iterations, while the drop tolerance
and fill factor were 10−5 and 30 respectively.

Results are computed using all three variants described
previously, i.e. WLS (with Gaussian weights using σ = 1.5,
essentially increasing the importance of nodes further away
from the central stencil node), RBF-FD and a hybrid version
of both with rs = 0.5, for monomials of order m = 4 and
PHS of order k = 5. A visual representation of the solution
obtained with the hybrid method is shown in Figure 6, while
a comparison of important numerical data is given in Table I.

We see that the novel hybrid method was able to obtain
a numerical solution of sufficient quality. It is also clear
from Table I that RBF-FD was able to achieve the best
accuracy - approximately two orders of magnitude better
than the hybrid method, but more importantly, the pure WLS
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Fig. 3. Convergence rates for WLS approximation approach (blue), RBF-FD approximation approach (green) and a novel hybrid approximation approach
(red) for low order approximations m = 2 (left) and higher order approximations m = 4 (middle) and m = 6 right.

Fig. 4. Normalized spread around a median infinity norm error after Nruns = 100 for WLS approximation approach (blue), RBF-FD approximation approach
(green) and a novel hybrid approximation approach (red) for low order approximations m = 2 (left) and higher order approximations m = 4 (middle) and
m = 6 right.

TABLE I
COMPARISON TABLE FOR THE SOLUTION OF BOUSSINESQ’S PROBLEM.

Approximation e∞ tshape [s] NRBF-FD/N · 100
WLS NaN 4.74 0.00

RBF-FD 9.48·10−5 8.22 100.00

hybrid 2.37·10−3 6.15 34.28

approximation approach field to converge. This observation is

of great importance, because it justifies the effort required to
implement a hybrid method. It is also important to observe that
less than 35 % of the nodes from the hybrid method used the
RBF-FD approximation approach, which is already enough
to outperform the WLS in terms of stability and precision,
and small enough to outperform the RBF-FD in terms of
computation time, reducing it by about 33 %.

V. CONCLUSIONS

A novel WLS–RBF-FD mesh-free method combining the
RBF-FD and WLS variants is presented. We demonstrate that
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Fig. 5. Shape computation times for WLS approximation approach (blue),
RBF-FD approximation approach (green) and a hybrid WLS–RBF-FD ap-
proximation approach (red).

Fig. 6. Example benchmark case. Numerical solution obtained with the
proposed WLS–RBF-FD hybrid method.

we can combine the advantages of the two commonly used
mesh-free variants with only a small amount of additional
work justified for the higher order (m > 2) approximations.

Using a two-dimensional synthetic example with expo-
nentially strong source, we show that the newly proposed
hybrid method can be successfully used to obtain a numerical
solution. We also demonstrate that the hybrid method is indeed
computationally cheaper than the pure RBF-FD approach and
more stable than the pure WLS approach for higher order
approximations. Finally, on a solution to the three-dimensional
Boussinesq’s problem of the concentrated normal traction

acting on an isotropic half-space we observe that the WLS
variant fails to converge, while the hybrid WLS–RBF-FD
method converges and reduces the shape computational times
for about 33 % compared to the pure RBF-FD.

In this work, the stencils were a priori divided into RBF-FD
stencils and WLS stencils. We believe that better results could
be obtained by using error indicators.
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4.2 Spatially-Varying Meshless Approximation Method Based
on Node Regularity

Another approach for enhanced computational efficiency is based on the regularity of com-
putational nodes. Uniform discretization is not only easier to implement but also allows
the employment of the computationally cheap MON approximation. However, uniform dis-
cretization has two disadvantages. First, it makes it difficult to avoid discretization-related
errors in the presence of irregularly shaped domain boundaries, and, second, employing h-
adaptive or h-refined solutions becomes non-trivial. Scattered nodes, on the other hand,
address both issues, but a more stable approximation method with generally higher com-
putational complexity must be employed.

We therefore propose a hybrid uniform-scattered discretization, positioning scattered
nodes only where necessary and uniform nodes elsewhere. On uniform nodes the MON
approximation is used, while a stable RBF-FD approximation method is used on scattered
nodes. The entire solution procedure employing spatially-variable discretization and corre-
spondingly spatially-variable approximation methods is further discussed in the following
publication.

Contributions.
This section represents contribution C9, proving that spatially-varying node regularity
accompanied with spatially-varying approximation method can improve the computational
efficiency with a negligible cost to the accuracy of the numerical solution.

Addressed hypotheses.
Our findings show that spatially-variable node regularity and accompanying spatially-
variable approximation method can yield up to 50% shorter execution times with a negli-
gible effect on the accuracy of the numerical solution. Demonstrated on the de Vahl Davis
problem, hypothesis H7 is finally confirmed.

Publications included in this section:

• M. Jančič, M. Rot, and G. Kosec, “Spatially-varying meshless approximation
method for enhanced computational efficiency,” in Computational Science –
ICCS 2023, J. Mikyška, C. de Mulatier, M. Paszynski, et al., Eds., Cham:
Springer Nature Switzerland, 2023, pp. 500–514, isbn: 978-3-031-36027-5

Regarding my contribution: I made a literature overview of the topic, participated
in the implementation of the solution procedure, planned and executed the analyses
and jointly prepared the manuscript with co-authors.
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Abstract. In this paper, we address a way to reduce the total compu-
tational cost of meshless approximation by reducing the required sten-
cil size through spatially varying computational node regularity. Rather
than covering the entire domain with scattered nodes, only regions with
geometric details are covered with scattered nodes, while the rest of
the domain is discretized with regular nodes. A simpler approximation
using solely monomial basis can be used in regions covered by regular
nodes, effectively reducing the required stencil size and computational
cost compared to the approximation on scattered nodes where a set of
polyharmonic splines is added to ensure convergent behaviour.

The performance of the proposed hybrid scattered-regular approxi-
mation approach, in terms of computational efficiency and accuracy of
the numerical solution, is studied on natural convection driven fluid flow
problems. We start with the solution of the de Vahl Davis benchmark
case, defined on a square domain, and continue with two- and three-
dimensional irregularly shaped domains. We show that the spatial vari-
ation of the two approximation methods can significantly reduce the
computational demands, with only a minor impact on the accuracy.

Keywords: Collocation · RBF-FD · RBF · Meshless · Hybrid
method · Fluid-flow · Natural convection · Numerical simulation

1 Introduction

Although the meshless methods are formulated without any restrictions regard-
ing the node layouts, it is generally accepted that quasi-uniformly-spaced node
sets improve the stability of meshless methods [12,23]. Nevertheless, even with
quasi-uniform nodes generated with recently proposed node positioning algo-
rithms [14,15,18], a sufficiently large stencil size is required for stable approx-
imation. A stencil with n = 2

(
m+d

m

)
nodes is recommended [1] for the local

Radial Basis Function-generated Finite differences (RBF-FD) [20] method in a
d-dimensional domain for approximation order m. The performance of RBF-FD
method—with approximation basis consisting of Polyharmonic splines (PHS)

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Mikyška et al. (Eds.): ICCS 2023, LNCS 14076, pp. 500–514, 2023.
https://doi.org/10.1007/978-3-031-36027-5_39
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and monomial augmentation with up to and including monomials of degree m—
has been demonstrated with scattered nodes on several applications [8,17,24].
On the other hand, approximation on regular nodes can be performed with
considerably smaller stencil [10] (n = 5 in two-dimensional domain) using only
monomial basis.

Therefore, a possible way to enhance the overall computational efficiency
and consider the discretization-related error is to use regular nodes far away
from any geometric irregularities in the domain and scattered nodes in their
vicinity. A similar approach, where the approximation method is spatially var-
ied, has already been introduced, e.g., a hybrid FEM-meshless method [6] has
been proposed to overcome the issues regarding the unstable Neumann bound-
ary conditions in the context of meshless approximation. Moreover, the authors
of [2,5] proposed a hybrid of Finite Difference (FD) method employed on conven-
tional cartesian grid combined with meshless approximation on scattered nodes.
These hybrid approaches are computationally very efficient, however, additional
implementation-related burden is required on the transition from cartesian to
scattered nodes [9], contrary to the objective of this paper relying solely on the
framework of meshless methods.

In this paper we experiment with such hybrid scattered-regular method with
spatially variable stencil size on solution of natural convection driven fluid flow
cases. The solution procedure is first verified on the reference de Vahl Davis case,
followed by a demonstration on two- and three-dimensional irregular domains.
We show that spatially varying the approximation method can have positive
effects on the computational efficiency while maintaining the accuracy of the
numerical solution.

2 Numerical Treatment of Partial Differential Equations

To obtain the hybrid scattered-regular domain discretization, we first fill the
entire domain with regular nodes. A portion of this regular nodes is then removed
in areas where a scattered node placement is desired, i.e., close to the irregu-
lar boundaries. Finally, the voids are filled with a dedicated node positioning
algorithm [18] that supports variable nodal density and allows us to refine the
solution near irregularities in the domain. This approach is rather naive but
sufficient for demonstration purposes. A special hybrid fill algorithm is left for
future work.

An example of an h-refined domain discretization is shown in Fig. 1. It is
worth noting that the width of the scattered node layer δh is non-trivial and
affects both the stability of the solution procedure and the accuracy of the
numerical solution. Although we provide a superficial analysis of δh variation
in Sects. 4.1 and 4.2, further work is warranted.

After the computational nodes x i ∈ Ω are obtained, the differential operators
L can be locally approximated in point x c over a set of n neighbouring nodes
(stencil) {x i}n

i=1 = N , using the following expression

(Lu)(x c) ≈
n∑

i=1

wiu(x i). (1)
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Fig. 1. Irregular domain discretization example (left) and spatial distribution of
approximation methods along with corresponding example stencils (right).

The approximation (1) holds for an arbitrary function u and yet to be deter-
mined weights w . To determine the weights, the equality of approximation (1)
is enforced for a chosen set of basis functions. Here we will use two variants

(i) a set of Polyharmonic splines (PHS) augmented with monomials to ensure
convergent behaviour [1,7], effectively resulting in a popular radial basis
function-generated finite differences (RBF-FD) approximation method [20].

(ii) a set of monomials centred at the stencil nodes that we will refer to as
(MON) [10].

We use the least expensive MON with 2d + 1 monomial basis functions1
and the same number of support nodes in each approximation stencil. This
setup is fast, but only stable on regular nodes [10,16]. For the RBF-FD part,
we also resort to the minimal configuration required for 2nd-order operators,
i.e., 3rd-order PHS augmented with all monomials up to the 2nd-order (m = 2).
According to the standard recommendations [1], this requires a stencil size of
n = 2

(
m+d

m

)
.

Note the significant difference between stencil sizes—5 vs. 12 nodes in 2D—
that only increases in higher dimensions (7 vs. 30 in 3D). This results both in
faster computation of the weights w—an O(N3)2 operation performed only once
for each stencil—and in faster evaluation for the O(n) explicit operator approx-

1 In 2D, the 5 basis functions are {1, x, y, x2, y2}. The xy term is not required for
regularly placed nodes and its omission allows us to use the smaller and completely
symmetric 5-node stencil.

2 NRBF−FD ∼ 3NMON due to the larger stencil size and the extra PHS in the approx-
imation basis.
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imation (1) performed many times during the explicit time stepping. There-
fore, a spatially varying node regularity can have desirable consequences on the
discretization-related errors and computational efficiency of the solution proce-
dure.

2.1 Computational Stability

By enforcing the equality of approximation (1), we obtain a linear system Mw =
�. Solving the system provides us with the approximation weights w, but the
stability of such procedure can be uncertain and is usually estimated via the
condition number κ(M) = ‖M‖ ∥

∥M−1
∥
∥ of matrix M, where ‖·‖ denotes the L2

norm.
A spatial distribution of condition numbers is shown in Fig. 2. It can be

observed that the RBF-FD approximation method generally results in higher
condition numbers than the MON approach. This could be due to the fact that
the matrices M for the RBF-FD part are significantly larger and based on scat-
tered nodes. Nevertheless, it is important to note that the transition from regular
to scattered nodes does not appear to affect the conditionality of the matrices.

Fig. 2. Condition numbers κ(M) for the Laplacian operator: entire computational
domain (left) and a zoomed-in section around the irregularly shaped obstacle (right).

2.2 Implementation Details

The entire solution procedure employing the hybrid scattered-regular method
is implemented in C++. The projects implementation3 is strongly dependent
on our in-house developed meshless C++ framework Medusa library [19] sup-
porting all building blocks of the solution procedure, i.e., differential operator
approximations, node positioning algorithms, etc.
3 Source code is available at http://gitlab.com/e62Lab/public/2023_cp_iccs_

hybrid_nodes under tag v1.1.
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We used g++ 11.3.0 for Linux to compile the code with -O3 -DNDEBUG
flags on Intel(R) Xeon(R) CPU E5520 computer. To improve the timing accu-
racy we run the otherwise parallel code in a single thread with the CPU fre-
quency fixed at 2.27GHz, disabled boost functionality and assured CPU affinity
using the taskset command. Post-processing was done using Python 3.10.6 and
Jupyter notebooks, also available in the provided git repository.

3 Governing Problem

To objectively assess the advantages of the hybrid method, we focus on the
natural convection problem that is governed by a system of three PDEs that
describe the continuity of mass, the conservation of momentum and the transfer
of heat

∇·v = 0, (2)
∂v
∂t

+ v · ∇v = −∇p + ∇·(Pr∇v) − RaPrgTΔ, (3)

∂T

∂t
+ v · ∇T = ∇·(∇T ), (4)

where a dimensionless nomenclature using Rayleigh (Ra) and Prandtl (Pr) num-
bers is used [11,22].

The temporal discretization of the governing equations is solved with the
explicit Euler time stepping where we first update the velocity using the pre-
vious step temperature field in the Boussinesq term [21]. The pressure-velocity
coupling is performed using the Chorin’s projection method [3] under the premise
that the pressure term of the Navier-Stokes equation can be treated separately
from other forces and used to impose the incompressibility condition. The time
step is a function of internodal spacing h, and is defined as dt = 0.1h2

2 to assure
stability.

4 Numerical Results

The governing problem presented in Sect. 3 is solved on different geometries
employing (i) MON, (ii) RBF-FD and (iii) their spatially-varying combination.
The performance of each approach is evaluated in terms of accuracy of the
numerical solution and execution times. Unless otherwise specified, the MON
method is employed using the monomial approximation basis omitting the mixed
terms, while the RBF-FD approximation basis consists of Polyharmonic splines
or order k = 3 augmented with monomials up to and including order m = 2.
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4.1 The de Vahl Davis Problem

First, we solve the standard de Vahl Davis benchmark problem [22]. The main
purpose of solving this problem is to establish confidence in the presented solu-
tion procedure and to shed some light on the behaviour of considered approxi-
mation methods, the stability of the solution procedure and finally on the com-
putational efficiency. Furthermore, the de Vahl Davis problem was chosen as the
basic test case, because the regularity of the domain shape allows us to effi-
ciently discretize it using exclusively scattered or regular nodes and compare the
solutions to that obtained with the hybrid scattered-regular discretization.

Fig. 3. The de Vahl Davis sketch (left) and example hybrid scattered-regular domain
discretization (right).

For a schematic representation of the problem, see Fig. 3 (left). The domain
is a unit box Ω = [0, 1]× [0, 1], where the left wall is kept at a constant temper-
ature TC = −0.5, while the right wall is kept at a higher constant temperature
TH = 0.5. The upper and lower boundaries are insulated, and no-slip boundary
condition for velocity is imposed on all walls. Both the velocity and temperature
fields are initially set to zero.

To test the performance of the proposed hybrid scattered-regular approxi-
mation method, we divide the domain Ω into quarters, where each quarter is
discretized using either scattered or regular nodes – see Fig. 3 (right) for clarity.

An example solution for Ra = 106 and Pr = 0.71 at a dimensionless time
t = 0.15 with approximately N = 15 800 discretization nodes is shown in Fig. 4.

We use the Nusselt number—the ratio between convective and conductive
heat transfer—to determine when a steady state has been reached and as a
convenient scalar value for comparison with reference solutions. In the following
analyses, the average Nusselt number (Nu) is calculated as the average of the
Nusselt values at the cold wall nodes

Nu =
L

TH − TC

∣
∣
∣
∣
∂T

∂n

∣
∣
∣
∣
x=0

. (5)

4.2. Spatially-Varying Meshless Approximation Method Based on Node Regularity 97



506 M. Jančič et al.

Fig. 4. Example solution at the stationary state. Temperature field (left) and velocity
magnitude (right).

Its evolution over time is shown in Fig. 5. In addition, three reference results
are also added to the figure. We are pleased to see that our results are in good
agreement with the reference solutions from the literature.

Fig. 5. Time evolution of the average Nusselt number along the cold edge calculated
with the densest considered discretization. Three reference results Kosec and Šarler [11],
Sadat and Couturier [13] and Wan et. al. [4] are also added.

Moreover, Fig. 5 also shows the time evolution of the average Nusselt num-
ber value for cases where the entire domain is discretized using either scattered
or regular nodes. We find that all—hybrid, purely scattered and purely regu-
lar domain discretizations—yield results in good agreement with the references.
More importantly, the hybrid method shows significantly shorter computational
time (about 50%) than that required by the scattered discretization employing
RBF-FD, as can be seen in Table 1 for the densest considered discretization with
h = 0.00398.
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Table 1. Average Nusselt along the cold edge along with execution times and number
of discretization nodes.

Approximation Nu execution time [h] N

scattered 8.867 6.23 55 477
regular 8.852 2.42 64 005
hybrid 8.870 3.11 59 694
Kosec and Šarler (2007) [11] 8.97 / 10201
Sadat and Couturier (2000) [13] 8.828 / 22801
Wan et. al. (2001) [4] 8.8 / 10201

To further validate the hybrid method, we show in Fig. 6 the vertical com-
ponent of the velocity field across the section y = 0.5. It is important to observe
that the results for the hybrid, scattered and regular approaches overlap, which
means that the resulting velocity fields for the three approaches are indeed com-
parable.

Fig. 6. Vertical velocity component values at nodes close to the vertical midpoint of the
domain, i.e., |y−0.5| ≤ h for purely scattered, purely regular and hybrid discretizations.

As a final remark, we also study the convergence of the average Nusselt
number with respect to the number of discretization nodes in Fig. 7 (left), where
we confirm that all our discretization strategies converge to a similar value that
is consistent with the reference values. Moreover, to evaluate the computational
efficiency of the hybrid approach, the execution times are shown on the right.
Note that the same values for h were used for all discretization strategies and
the difference in the total number of nodes is caused by the lower density of
scattered nodes at the same internodal distance.
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Fig. 7. Convergence of average Nusselt number with respect to discretization quality
(left) and corresponding execution times (right).

The Effect of the Scattered Nodes Layer Width δh . To study the effect
of the width of the scattered node layer δh, we consider two cases. In both cases,
the domain from Fig. 3 is split into two parts at a distance hδh from the origin
in the lower left corner. In the first scenario, the split is horizontal, resulting
in scattered nodes below the imaginary split and regular nodes above it. In the
second scenario, the split is vertical, resulting in scattered nodes to the left of
it and regular nodes to the right of it. In both cases, the domain is discretized
with purely regular nodes when hδh = 0 and with purely scattered nodes when
hδh = L.

In Fig. 8, we show how the width of the scattered node layer affects the aver-
age Nusselt number in stationary state for approximately 40 000 discretization
nodes. It is clear that even the smallest values of δh yield satisfying results. How-
ever, it is interesting to observe that the accuracy is significantly affected when
the boundary between regular and scattered nodes runs across the region with
the largest velocity magnitudes, i.e., the first and last couple of vertical split
data points in Fig. 8.

4.2 Natural Convection on Irregularly Shaped Domains

In the previous section we demonstrated that the hybrid scattered-regular
approximation method is computationally more efficient than the pure RBF-
FD approximation with only minor differences in the resulting fields. However,
to truly exploit the advantages of the hybrid method, irregular domains must
be studied. Therefore, in this section, the hybrid scattered-regular approach is
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Fig. 8. Demonstration of the scattered node layer width (δh) effect on the accuracy of
the numerical solution.

employed on an irregularly shaped domain. Let the computational domain Ω
be a difference between the two-dimensional unit box Ω = [0, 1] × [0, 1] and 4
randomly positioned duck-shaped obstacles introducing the domain irregularity.

The dynamics of the problem are governed by the same set of Eqs. (2–4) as
in the previous section. This time, however, all the boundaries of the box are
insulated. The obstacles, on the other hand, are subject to Dirichlet boundary
conditions, with half of them at TC = 0 and the other half at TH = 1. The initial
temperature is set to Tinit = 0.

We have chosen such a problem because it allows us to further explore the
advantages of the proposed hybrid scattered-regular discretization. Generally
speaking, the duck-shaped obstacles within the computational domain represent
an arbitrarily complex shape that requires scattered nodes for accurate descrip-
tion, i.e., reduced discretization-related error. Moreover, by using scattered nodes
near the irregularly shaped domain boundaries, we can further improve the local
field description in their vicinity by employing a h-refined discretization. Specif-
ically, we employ h-refinement towards the obstacles with linearly decreasing
internodal distance from hr = 0.01 (regular nodes) towards hs = hr/3 (irregular
boundary) over a distance of hrδh. The refinement distance and the width of the
scattered node layer are the same, except in the case of fully scattered discretiza-
tion. Such setup effectively resulted in approximately N = 11 600 computational
nodes (Ns = 3149 scattered nodes and Nr = 8507 regular nodes), as shown in
Fig. 1 for a scattered node layer width δh = 4. Note that the time step is based
on the smallest h, i.e., dt = 0.1h2

s

2 .
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Fig. 9. Example solution on irregular domain. Temperature field (left) and velocity
magnitude (right).

Figure 9 shows an example solution for an irregularly shaped domain. The
hybrid scattered-regular solution procedure was again able to obtain a reasonable
numerical solution.

Furthermore, Fig. 10 (left) shows the average Nusselt number along the cold
duck edges where we can observe that a stationary state has been reached.
The steady state values for all considered discretizations match closely but it is
interesting to note that in the early stage of flow formation, the fully scattered
solutions with different refinement distance δh differ significantly more than the
hybrid and the fully scattered solutions with the same refinement strategy.

Fig. 10. Time evolution of the average Nusselt number calculated on the cold duck-
shaped obstacles of an irregularly shaped domain. (left) Changes in stationary state
average Nusselt number as the scattered node layer width δh increases. (right)
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It is perhaps more important to note that the execution times gathered in
Table 2 show that the hybrid method effectively reduces the execution time for
approximately 35 %. The pure regular discretization with MON approximation is
omitted from the table because a stable numerical solution could not be obtained.

Table 2. Average Nusselt along the cold duck edges along with execution times. Note
that all values in the table were obtained for δh = 4.

Approximation Nu execution time [min] N

scattered 12.32 46.31 10 534
hybrid 12.36 29.11 11 535

The Effect of the Scattered Nodes Layer Width δh . To justify the use of
δh = 4, we show in Fig. 10 (right) that the average value of the Nusselt num-
ber at steady state for different values of δh. In the worst case, the difference is
<2%, justifying the use of the computationally cheaper smaller δh. Note that in
this particular domain setup, δh > 64 already yields a purely scattered domain
discretization, while the minimum stable value is δh = 4. Note also that the gen-
eral increase of the Nusselt number with respect to the width of the scattered
node layers δh may also exhibit other confounding factors. An increase in δh

leads to a finer domain discretization due to a more gradual refinement, i.e., a
fully scattered discretization using δh = 70 results in about 35 000 discretization
points compared to 11 600 at δh = 4, while a decrease in δh leads to a more
aggressive refinement that could also have a negative effect. This can be sup-
ported by observing the difference between the results for the two fully scattered
discretizations in Fig. 10.

4.3 Application to Three-Dimensional Irregular Domains

As a final demonstrative example, we employ the proposed hybrid scattered-
regular approximation method on a three-dimensional irregular domain. The
computational domain Ω is a difference between the three-dimensional unit box
Ω = [0, 1]×[0, 1]×[0, 1] and 4 randomly positioned and sized spheres introducing
the domain irregularity.

The dynamics are governed by the same set of Eqs. (2–4) as in the two-
dimensional case from Sect. 4.2. To improve the quality of the local field descrip-
tion near the irregularly shaped domain boundaries, h-refinement is employed
with a linearly decreasing internodal distance from hr = 0.025 (regular nodes)
towards hs = hr/2 (spherical boundaries). Two spheres were set to a constant
temperature TC = 0 and the remaining two to TH = 1. The Rayleigh number
was set to 104.

Although difficult to visualize, an example solution is shown in Fig. 11. Using
the hybrid scattered-regular domain discretization, the solution procedure was
again able to obtain a reasonable numerical solution.
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Fig. 11. Example solution viewed from three different angles. The arrows show the
velocity in computational nodes and are coloured according to the temperature in that
node. The values range from dark blue for TC to dark red for TH . For clarity, only a
third of the nodes is visualized. (Color figure online)

Note that the scattered method took about 48 h and the hybrid scattered-
regular approximation method took 20 h to simulate 1 dimensionless time unit
with the dimensionless time step dt = 7.8125 · 10−6 and about 75 000 computa-
tional nodes with δh = 4. For clarity, the data is also gathered in Table 3. Note
that the pure regular discretization with MON approximation is again omitted
from the table because a stable numerical solution could not be obtained.

Table 3. Average Nusselt along the cold spheres, execution time, and number of com-
putational nodes.

Approximation Nu execution time [h] N

scattered 7.36 48.12 65 526
hybrid 6.91 20.54 74 137

5 Conclusions

We proposed a computationally efficient approach to the numerical treatment
of problems in which most of the domain can be efficiently discretized with reg-
ularly positioned nodes, while scattered nodes are used near irregularly shaped
domain boundaries to reduce the discretization-related errors. The computa-
tional effectiveness of the spatially-varying approximation method, employing
FD-like approximation on regular nodes and RBF-FD on scattered nodes, is
demonstrated on a solution to a two-dimensional de Vahl Davis natural convec-
tion problem.

We show that the proposed hybrid method, can significantly improve the
computational efficiency compared to the pure RBF-FD approximation, while
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introducing minimal cost to the accuracy of the numerical solution. A conver-
gence analysis from Fig. 7 shows good agreement with the reference de Vahl Davis
solutions.

In the continuation, the hybrid method is applied to a more general natural
convection problem in two- and three-dimensional irregular domains, where the
elegant mathematical formulation of the meshless methods is further exposed by
introducing h-refinement towards the irregularly shaped obstacles. In both cases,
the hybrid method successfully obtained the numerical solution and proved to
be computationally efficient, with execution time gains nearing 50 %.

Nevertheless, the scattered node layer width and the aggressiveness of h-
refinement near the irregularly shaped domain boundaries should be further
investigated, as both affect the computational efficiency and stability of the
solution procedure. In addition, future work should also include more difficult
problems, such as mixed convection problems and a detailed analysis of possible
surface effects, e.g. scattering, at the transition layer between the scattered and
regular domains.
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Chapter 5

Conclusions and Future Work

In this thesis, we studied some approaches toward efficient solution procedures for solv-
ing PDEs. We began by investigating the fundamental properties of two commonly used
approximation methods with the ability to operate on scattered nodes: the RBF-FD and
the WLS approximation methods. Between the two, the RBF-FD method showed supe-
rior performance by providing more accurate solutions and greater stability of the solution
procedure, especially when dealing with high-order approximations. We also showed that
the approximation order is easily controlled by the highest monomial degree in the approx-
imation basis, and found that there exists an optimal setup in terms of execution time and
targeted solution accuracy. Our studies also include the stencil size influence on the per-
formance of the linear differential operator approximation in terms of the approximation
accuracy.

In the second step of our research, we proposed to spatially vary the approximation
order using an a priori defined approximation-order-distribution. We then developed an
original IMEX error indicator based on high-order approximations, which made it possible
to implement and study a meshless hp-adaptive solution procedure – a procedure that
simultaneously adjusts the spatial discretization resolution and the approximation order
for more efficient PDE-solving solution procedures.

In the last chapter, we proposed an adaptive solution procedure based on spatially
varying the approximation method. We demonstrated the advantages of a hybrid WLS–
RBF-FD approximation method and extended the idea to spatially-variable node regularity
employing the RBF-FD approximation on scattered nodes and the MON approximation
on uniform nodes. Both approaches were again able to improve the efficiency of the PDE-
solving solution procedure.

While we have successfully identified and demonstrated some opportunities to modify
the solution procedures for an efficient PDE-solving, in the process, we have also observed
many possibilities for future work. Conclusions and some opportunities for future work
are discussed in the following sections.

5.1 Summary of Conclusions

Fundamentals of Meshless Approximation

Our research began with a series of performance analyses of different meshless approxi-
mation methods, where we observed several important characteristics in the process. In
particular, we focused on the behaviour of high-order approximations on scattered nodes.

We have shown that there exists an optimal augmenting monomial degree in the RBF-
FD approximation basis in terms of the computational complexity of the solution procedure
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and the target accuracy of the numerical solution. This allowed us to provide guidelines
for monomial augmentation to achieve the targeted accuracy of the numerical solution in
a time-efficient manner. In the process, we also demonstrated that the order of approxi-
mation can easily be controlled by the highest augmenting monomial degree – a property
that is later crucial for the implementation of an hp-adaptive solution procedure.

The fact that the stencil size can notably affect both the stability of the solution
procedure and the accuracy of the numerical solution has already been observed by Bayona.
Our contribution to this topic is based on the observation that the Bayona’s recommended
stencil size n = 2

(
m+d
d

)
for a stable RBF-FD approximation is by no means optimal.

We have shown that already a small change in the stencil size can lead to numerical
solutions that are almost an order of magnitude more accurate. In doing so, we observed
an interesting oscillatory behaviour of the approximation error. Although this observation
is not yet fully understood, we believe it could open up new opportunities toward optimal
stencil size research.

Another contribution that falls under the general understanding of meshless approx-
imations was obtained by directly comparing the performance of the RBF-FD and WLS
approximations. Our analyses showed that the larger approximation basis in RBF-FD
yields more stable and more accurate high-order approximations, while low-order approx-
imations are better obtained with the WLS approximation. This observation made the
RBF-FD approximation a better candidate for the development of hp-adaptive solution
procedure, where stable and accurate high-order approximations are crucial.

hp-Adaptive Solution Procedure

To the best of our knowledge, the research in this thesis represents the first true hp-adaptive
solution procedure employing meshless methods. Although some aspects are still in need
of further research, we were able to draw several conclusions from it.

First, we have shown that a spatially varying approximation order leading to p-refined
numerical solutions has desirable effects toward efficient PDE-solving solution procedures.
Enforcing high-order approximations in domain regions where the error of the numerical
solution is high locally reduces the error of the numerical solution and thus has a similar
effect to improving the spatial discretization. We demonstrated that a well-thought-out
spatial distribution of high-order approximations can reduce the ℓ∞-norm of the solution’s
error, while minimally increasing the computational complexity as a consequence of the
high-order approximations requiring larger stencil sizes.

The drawback of the proposed p-refined solution procedure is that the spatial dis-
tribution of the approximation order was defined a priori, contrary to adaptive solution
procedures that aim to eliminate the need for human intervention in the solution procedure
by automatically identifying the domain regions with high error of the numerical solution.
A commonly used tool for identifying regions in need of refinement is an error indicator.
We have proposed an original error indicator based on the high order approximations. The
proposed IMEX error indicator makes use of the implicitly obtained numerical solution and
explicit operators (approximated by a higher order approximation basis) to reconstruct the
right-hand side of the governing PDE. The true and the reconstructed right-hand sides are
then compared. The idea is similar to the one behind the ZZ-type indicators, where the
deviation of the recovered high-order solution from the computed solution characterises
the error. We have used a Poisson problem with an exponentially strong source within
the domain to demonstrate that the proposed IMEX error indicator is able to successfully
identify the regions with high solution error.

Equipped with the tool for automated localization of domain regions with lowest ac-
curacy of the numerical solution, we then had all the building blocks required for the
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implementation of a hp-adaptive solution procedure. We chose to work with the RBF-
FD approximations and grounded the proposed hp-adaptive solution procedure on a well-
established solve-estimate-mark-refine paradigm. In the solve stage, the implicit solution
of the governing problem is obtained using the RBF-FD approximation. In the estimate
stage, the IMEX error indicator is used to identify the regions with the likely large nu-
merical solution error. Afterwards, the marking strategy is used in the mark stage to (i)
define which nodes are subject to (de-)refinement and (ii) which type of adaptivity should
be invoked, i.e. h or p. In our work, the marking strategy is based on the Texas Three Step
algorithm, which is a very easy-to-implement strategy that gives good enough results for
demonstration purposes, but is conceptually flawed to achieve more optimal results. This
is particularly evident in the proximity of singularities, where a better spatial discretization
should be preferred. Instead, the proposed marking strategy also forces higher approxi-
mation orders. Nevertheless, with the proposed solution procedure we were able to clearly
demonstrate the advantages of simultaneously varying the discretization quality and the
approximation order on a set of two- and three-dimensional linear elasticity problems.

During our implementation of the hp-adaptive solution procedure, we also conducted
a brief study on the efficiency of the final large sparse system. We studied different solvers
(direct and iterative) in terms of the solver error and execution times and found that the
direct solvers are generally faster, but require significantly more memory for large domains.
Therefore, we chose to work with the general-purpose iterative BiCGSTAB solver to avoid
memory-related problems, but at the cost of longer execution times.

Spatially-Adaptive Approximation Methods

Through our research, we have found another opportunity to enhance the efficiency of
PDE-solving solution procedures. Specifically, we have proposed to spatially vary the
approximation method. While such procedures have already been proposed by other re-
searchers, to the best of our knowledge, our attempt – which is entirely based on the
framework of meshless methods – does not require any special treatment on the transition
between one or more approximation methods.

For instance, in the first chapter, we concluded that RBF-FD is more stable than
WLS, but WLS is computationally cheaper. This observation led us to the idea of using
a hybrid approximation method that combines the advantages of both methods. In our
implementation, we used RBF-FD in regions where stability was important and WLS in
regions where stability issues were not expected. The proposed hybrid WLS–RBF-FD
approximation method was tested on a Poisson problem and showed improvements in the
efficiency of the PDE-solving solution procedure while maintaining the accuracy of the
numerical solution. The performance was then also demonstrated on a three-dimensional
contact problem, where we showed that the pure WLS approximation is not stable enough
to obtain a numerical solution, while the hybrid approximation method is stable enough
and reduces the wall-clock times by about 33%, compared to the pure RBF-FD method.

In the second approach, our attention shifted to the second-order RBF-FD approxi-
mations with a recommended support size n = 12 in two-dimensional domains and to the
cost-effective MON approximation, which uses only monomials in the approximation basis
and requires a smaller stencil size of n = 5. While RBF-FD can operate with scattered
nodes, the stability of MON is limited to uniform nodes. This led us to the idea of using a
hybrid scattered-uniform discretization that employs RBF-FD approximation on scattered
nodes and the MON approximation on uniform nodes. Here, scattered nodes are positioned
in such a way that the irregularly shaped domain boundaries are accurately discretized and
local application of h-refinement is possible, while uniform nodes are positioned elsewhere.
The proposed hybrid scattered-uniform discretization method has been tested on a solu-
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tion to the de Vahl Davis problem in two- and three-dimensional domains. We have shown
that the hybrid approach was able to improve the efficiency of the solution procedure and
reduce the execution time by almost 50%.

5.2 Future Work Opportunities

Further analysis of RBF-FD and WLS approximation methods: We have exam-
ined the differences between RBF-FD and WLS approximation methods, but our analyses
are by no means complete. Thus, we would like to extend the comparison by investigating
the stencil size, shape parameters (present in the WLS approximation) and approxima-
tion stability in case of non-optimal domain discretizations. We would also like to better
understand the oscillatory behaviour of the solution-error observed in our analyses with
RBF-FD. Perhaps more complicated problems and domain shapes should also be included
in the analyses.

Performance of the IMEX error indicator: With regard to the proposed IMEX
error indicator, it is important that its theoretical background is well-understood and
further investigated. The performance of IMEX should be further tested across a wider
range of examples. For example, application to fluid flow problems could further verify our
governing idea. Given that high-order approximations near singularities are conceptually
flawed, developing an error indicator that considers such scenarios could lead to an even
more robust implementation.

The marking strategy: The Texas Three Step marking strategy used in our work is not
optimal for any of the problems addressed; rather, it is a starting point for the development
of the meshless hp-adaptive methods. A much better marking strategy would take into
account the smoothness of the solution and act accordingly, i.e. in areas with singularity
the h-refinement would be preferred, while in areas with smooth solution the p-refinement
would be preferred. In FEM, strategies that use local Sobolev regularity estimates to
choose between the h- and the p-refinement for a given finite element have been proposed.

In our work, we wanted to keep things as simple as possible, so we used the Texas
Three Step marking strategy as the cornerstone of our strategy. Nevertheless, marking
strategies based on local data regularity should certainly be one of the first steps in future
development of meshless hp-adaptive solution procedures.

The hp-adaptive solution procedure: The proposed hp-adaptive solution procedure
needs further testing on various problems, perhaps fluid flow problems. Future work should
also consider time-dependent problems, which have only been briefly mentioned in our
research. The simplest approach to generalise the presented hp-adaptive solution procedure
to time-dependent problems would be a granular adjustment of h and p throughout the
simulation. In its simplest form, the proposed hp-adaptivity would be performed at each
time step, starting with the hp distributions of the previous time step and using the
same adaptivity parameters for all time steps. A more sophisticated approach would also
take into account the desired accuracy during the simulation, resulting in time-dependent
adaptivity parameters. Additionally, to perform a proper adaptive analysis, the time step
should also be adaptive, which would require an additional step in the hp-adaptive solution
procedure.

Many open questions about hp-adaptive solutions of time-dependent problems have
been left for future research.
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Spatially-variable approximation approach: We have proposed a spatially-variable
approximation approach that can improve the efficiency of PDE-solving solution proce-
dures. However, further research considering other approximation methods is needed. We
would also like to analyse the required width of the scattered node layer in the case of hy-
brid scattered-uniform discretizations and ensure that no additional treatment is required
on the transition between approximation methods or different node regularities.
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