

Spatially-varying meshless approximation method for enhanced computational efficiency

Mitja Jančič, Miha Rot, Gregor Kosec

July 4, 2023

Jožef Stefan Institute, Parallel and Distributed Systems Laboratory International Postgraduate School Jožef Stefan

1. Motivation

- 2. Spatially-varying approximation method
- 3. Computational stability
- 4. Governing problem
- 5. Conclusions

Motivation

Realistic problems do not have closed form solutions.

$$oldsymbol{
abla} oldsymbol{
abla} oldsymbol{
abla} = 0,$$

 $rac{\partial ec{v}}{\partial t} + ec{v} \cdot
abla ec{v} = -
abla p +
abla \cdot (\operatorname{Ra}
abla ec{v}) - ec{g} \operatorname{Ra} \operatorname{Pr} T_{\Delta},$
 $rac{\partial T}{\partial t} + ec{v} \cdot
abla T =
abla \cdot (
abla T)$

Numerical treatment is required:

- 1. Domain discretization
- 2. Differential operator approximation
- 3. PDE discretization
- 4. Solve sparse linear system

Differential operator approximation

$$(\mathcal{L}u)(\boldsymbol{x}_c) \approx \sum_{i=1}^n w_i u(\boldsymbol{x}_i)$$

 $\mathcal{L}\Big|_{\boldsymbol{x}_c} = \boldsymbol{w}_{\mathcal{L}}(\boldsymbol{x}_c)^T$

RBF-FD

- Polyharmonic splines augmented with monomials
- + Higher stability
- + Stable on scattered nodes
- Computationally demanding

Stencil size: 12 in 2D, 20 in 3D

MON

- A set of monomials centred at stencil nodes.
- $+ \ \ Computationally \ cheap$
- Unstable on irregular nodes

Stencil size: 5 in 2D and 7 in 3D

Both allow control over the order of the approximation.

Mitja Jančič, Miha Rot, Gregor Kosec

Spatially-varying approximation method

Spatially-varying approximation method

Computational stability

Computational stability

The stability is estimated via the condition number $\kappa(\mathbf{M}) = \|\mathbf{M}\| \|\mathbf{M}^{-1}\|$, where $\|\cdot\|$ denotes the L^2 norm.

Governing problem

To assess the advantages of the hybrid method, we focus on the <u>natural convection problem</u> that is governed by a system of three PDEs that describe the continuity of mass, the conservation of momentum and the transfer of heat

$$\boldsymbol{\nabla} \cdot \vec{\boldsymbol{v}} = \boldsymbol{0}, \tag{1}$$

$$\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \nabla \vec{v} = -\nabla p + \nabla \cdot (\Pr \nabla \vec{v}) - \operatorname{RaPr} \vec{g} T_{\Delta}, \qquad (2)$$

$$\frac{\partial T}{\partial t} + \vec{v} \cdot \nabla T = \nabla \cdot (\nabla T), \tag{3}$$

where a dimensionless nomenclature using Rayleigh (Ra) and Prandtl (Pr) numbers is used.

The de Vahl Davis problem

- To establish confidence in the presented solution procedure.
- Because the regularity of the domain shape allows us to efficiently discretize it using exclusively scattered or regular nodes.

The de Vahl Davis problem: example solution

The de Vahl Davis problem: Nusselt number

Nusselt number: a convenient scalar value for comparison with reference solutions. The average Nusselt number (\overline{Nu}) is calculated as the average of the Nusselt values at the cold wall nodes

$$\mathrm{Nu} = \frac{L}{T_H - T_C} \left| \frac{\partial T}{\partial \boldsymbol{n}} \right|_{\boldsymbol{x}=0}.$$
 (4)

Mitja Jančič, Miha Rot, Gregor Kosec

The de Vahl Davis problem: Comparing with references

Approximation	Nu	execution time [h]	N
scattered	8.867	6.23	55 477
regular	8.852	2.42	64 005
hybrid	8.870	3.11	59 694
Kosec and Šarler (2007)	8.97	/	10201
Sadat and Couturier (2000)	8.828	/	22801
Wan et. al. (2001)	8.8	/	10201

 Table 1: Average Nusselt along the cold edge along with execution times and number of discretization nodes.

• The hybrid method shows significantly shorter computational time (about 50 %), than that required by the scattered discretization employing RBF-FD.

Mitja Jančič, Miha Rot, Gregor Kosec

Spatially-varying meshless approximation method for enhanced computational efficiency

The de Vahl Davis problem: Convergence analysis

The de Vahl Davis problem: Width of scattered layer δ_h

The domain is split into two parts at a distance $h\delta_h$ from the origin in the lower left corner.

- Horizontal split, resulting in scattered nodes below the imaginary split and regular nodes above it.
- Vertical split, resulting in scattered nodes to the left of it and regular nodes to the right of it.

Mitja Jančič, Miha Rot, Gregor Kosec

Natural convection on irregularly shaped domains

Natural convection on irregularly shaped domains: Nusselt number

The hybrid method effectively reduces the execution time for approximately 35 %. The pure regular discretization with MON approximation is omitted from the table because a stable numerical solution could not be obtained.

Approximation	Nu	execution time [min]	Ν
scattered	12.32	46.31	10 534
hybrid	12.36	29.11	11 535

Table 2: Average Nusselt along the cold duck edges along with execution times. Note that all values in the table were obtained for $\delta_h = 4$.

Application to three-dimensional irregular domains

The scattered method took about 48 hours and the hybrid scattered-regular approximation method took 20 hours to simulate 1 dimensionless time unit with the dimensionless time step $dt = 7.8125 \cdot 10^{-6}$ and about 75 000 computational nodes with $\delta_h = 4$.

Approximation	Nu	execution time [h]	N
scattered	7.36	48.12	65 526
hybrid	6.91	20.54	74 137

Table 3: Average Nusselt along the cold spheres, execution time, and number of computational nodes.

Note: The pure regular discretization with MON approximation is again omitted from the table because a stable numerical solution could not be obtained.

Conclusions

- Proposed a computationally efficient approach to the numerical treatment of PDEs.
- Verified on a solution to a two-dimensional de Vahl Davis natural convection problem.
- Demonstrated on a solution within irregular two- and three-dimensional domains.

Future work:

- * A detailed study of the width of the scattered layer δ_h .
- Further study of aggressiveness of *h*-refinement.
- * Demonstration on more difficult problems: Mixed convection.

Thank you for your attention. Questions?