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Motivation



Why numerical solution?

Realistic problems do not have closed form

solutions.
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Numerical treatment

Numerical treatment is required:

1. Domain discretization

2. Differential operator approximation
3. PDE discretization
4

. Solve sparse linear system

Differential operator approximation

(Lu)(xc) ~ Z w;u(x;)
i=1

= WL(XC)T
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Approximation basis

RBF-FD MON
e Polyharmonic splines augmented with e A set of monomials centred at stencil
monomials nodes.
-+ Higher stability + Computationally cheap
-+ Stable on scattered nodes - Unstable on irregular nodes

- Comprizitiore(ly damemeli Stencil size: 5 in 2D and 7 in 3D

Stencil size: 12 in 2D, 20 in 3D

Both allow control over the order of the approximation.
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Spatially-varying approximation
method



Spatially-varying approximation met
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Computational stability



Computational stability

The stability is estimated via the condition number (M) = |[M|| |[M~||, where |-

the L2 norm.
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Governing problem



Governing problem

To assess the advantages of the hybrid method, we focus on the natural convection problem

that is governed by a system of three PDEs that describe the continuity of mass, the
conservation of momentum and the transfer of heat

V.7=0, (1)
% +V-VV=-Vp+V.(PrVVv)—RaPrgTx, (2)
oT
E—H?-VT:V-(VT)7 (3)

where a dimensionless nomenclature using Rayleigh (Ra) and Prandtl (Pr) numbers is used.
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The de Vahl Davis problem

e To establish confidence in the presented solution procedure.
e Because the regularity of the domain shape allows us to efficiently discretize it using
exclusively scattered or regular nodes.
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The de Vahl Davis problem: example solution
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The de Vahl Davis problem: Nusselt number

Nusselt number: a convenient scalar value for comparison with reference solutions. The average
Nusselt number (Nu) is calculated as the average of the Nusselt values at the cold wall nodes

L oT
Nu= | =] . (4)
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The de Vahl Davis problem: Comparing with references

Approximation Nu  execution time [h] N
scattered 8.867 6.23 55477
regular 8.852 2.42 64 005
hybrid 8.870 3.11 59 694
Kosec and Sarler (2007) 8.97 / 10201
Sadat and Couturier (2000) 8.828 / 22801
Wan et. al. (2001) 8.8 / 10201

Table 1: Average Nusselt along the cold edge along with execution times and number of discretization
nodes.

e The hybrid method shows significantly shorter computational time (about 50 %), than
that required by the scattered discretization employing RBF-FD.
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The de Vahl Davis problem:

Convergence analysis
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The de Vahl Davis problem: Width of scattered layer ¢,

The domain is split into two parts at a distance hé, from the origin in the lower left corner.

e Horizontal split, resulting in scattered nodes below the imaginary split and regular nodes

above it.

e Vertical split, resulting in scattered nodes to the left of it and regular nodes to the right

of it.
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Natural convection on irregularly shaped domains
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ural convection on irregularly shaped domains:
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Natural convection on irregularly shaped domains: Computational times

The hybrid method effectively reduces the execution time for approximately 35 %. The pure
regular discretization with MON approximation is omitted from the table because a stable
numerical solution could not be obtained.

Approximation ~ Nu  execution time [min] N
scattered 12.32 46.31 10534
hybrid 12.36 29.11 11535

Table 2: Average Nusselt along the cold duck edges along with execution times. Note that all values
in the table were obtained for §, = 4.
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Application to three-dimensional irregular domains
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Application to three-dimensional irregular domains: Execution times

The scattered method took about 48 hours and the hybrid scattered-regular approximation
method took 20 hours to simulate 1 dimensionless time unit with the dimensionless time step
dt = 7.8125-107° and about 75000 computational nodes with §;, = 4.

Approximation  Nu  execution time [h] N
scattered 7.36 48.12 65526
hybrid 6.91 20.54 74137

Table 3: Average Nusselt along the cold spheres, execution time, and number of computational nodes.

Note: The pure regular discretization with MON approximation is again omitted from the table
because a stable numerical solution could not be obtained.
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Conclusions




e Proposed a computationally efficient Future work:

approach to the numerical treatment of * A detailed study of the width of the
PDEs. scattered layer ¢j.

e Verified on a solution to a * Further study of aggressiveness of
two-dimensional de Vahl Davis natural h-refinement.
convection problem. * Demonstration on more difficult

e Demonstrated on a solution within problems: Mixed convection.

irregular two- and three-dimensional
domains.
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Thank you for your attention.
Questions?
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