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Motivation



Why numerical solution?

Realistic problems do not have closed form

solutions.

∇ · v⃗ = 0,

∂v⃗

∂t
+ v⃗ ·∇v⃗ = −∇p +∇ · (Ra∇v⃗)− g⃗RaPrT∆,

∂T

∂t
+ v⃗ ·∇T = ∇ · (∇T )
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Numerical treatment

Numerical treatment is required:

1. Domain discretization

2. Differential operator approximation

3. PDE discretization

4. Solve sparse linear system

Differential operator approximation

(Lu)(xc) ≈
n∑

i=1

wiu(x i )

L
∣∣∣
xc

= wL(xc)
T
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Approximation basis

RBF-FD

• Polyharmonic splines augmented with

monomials

+ Higher stability

+ Stable on scattered nodes

- Computationally demanding

Stencil size: 12 in 2D, 20 in 3D

MON

• A set of monomials centred at stencil

nodes.

+ Computationally cheap

- Unstable on irregular nodes

Stencil size: 5 in 2D and 7 in 3D

Both allow control over the order of the approximation.
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Spatially-varying approximation

method



Spatially-varying approximation method
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Computational stability



Computational stability

The stability is estimated via the condition number κ(M) = ∥M∥
∥∥M−1

∥∥, where ∥·∥ denotes

the L2 norm.
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Governing problem



Governing problem

To assess the advantages of the hybrid method, we focus on the natural convection problem

that is governed by a system of three PDEs that describe the continuity of mass, the

conservation of momentum and the transfer of heat

∇ · v⃗ = 0, (1)

∂v⃗

∂t
+ v⃗ ·∇v⃗ = −∇p +∇ · (Pr∇v⃗)− RaPrg⃗T∆, (2)

∂T

∂t
+ v⃗ ·∇T = ∇ · (∇T ), (3)

where a dimensionless nomenclature using Rayleigh (Ra) and Prandtl (Pr) numbers is used.
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The de Vahl Davis problem

• To establish confidence in the presented solution procedure.

• Because the regularity of the domain shape allows us to efficiently discretize it using

exclusively scattered or regular nodes.
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The de Vahl Davis problem: example solution
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The de Vahl Davis problem: Nusselt number

Nusselt number: a convenient scalar value for comparison with reference solutions. The average

Nusselt number (Nu) is calculated as the average of the Nusselt values at the cold wall nodes

Nu =
L

TH − TC

∣∣∣∣∂T∂n

∣∣∣∣
x=0

. (4)
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Mitja Jančič, Miha Rot, Gregor Kosec Spatially-varying meshless approximation method for enhanced computational efficiency 10 / 19



The de Vahl Davis problem: Comparing with references

Approximation Nu execution time [h] N

scattered 8.867 6.23 55 477

regular 8.852 2.42 64 005

hybrid 8.870 3.11 59 694

Kosec and Šarler (2007) 8.97 / 10201

Sadat and Couturier (2000) 8.828 / 22801

Wan et. al. (2001) 8.8 / 10201

Table 1: Average Nusselt along the cold edge along with execution times and number of discretization

nodes.

• The hybrid method shows significantly shorter computational time (about 50 %), than

that required by the scattered discretization employing RBF-FD.
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The de Vahl Davis problem: Convergence analysis
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Mitja Jančič, Miha Rot, Gregor Kosec Spatially-varying meshless approximation method for enhanced computational efficiency 12 / 19



The de Vahl Davis problem: Width of scattered layer δh

The domain is split into two parts at a distance hδh from the origin in the lower left corner.

• Horizontal split, resulting in scattered nodes below the imaginary split and regular nodes

above it.

• Vertical split, resulting in scattered nodes to the left of it and regular nodes to the right

of it.
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Figure 1: Demonstration of the scattered node layer width (δh) effect on the accuracy of the

numerical solution.
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Natural convection on irregularly shaped domains
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Natural convection on irregularly shaped domains: Nusselt number
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Mitja Jančič, Miha Rot, Gregor Kosec Spatially-varying meshless approximation method for enhanced computational efficiency 15 / 19



Natural convection on irregularly shaped domains: Computational times

The hybrid method effectively reduces the execution time for approximately 35 %. The pure

regular discretization with MON approximation is omitted from the table because a stable

numerical solution could not be obtained.

Approximation Nu execution time [min] N

scattered 12.32 46.31 10 534

hybrid 12.36 29.11 11 535

Table 2: Average Nusselt along the cold duck edges along with execution times. Note that all values

in the table were obtained for δh = 4.
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Application to three-dimensional irregular domains
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Application to three-dimensional irregular domains: Execution times

The scattered method took about 48 hours and the hybrid scattered-regular approximation

method took 20 hours to simulate 1 dimensionless time unit with the dimensionless time step

dt = 7.8125 · 10−6 and about 75 000 computational nodes with δh = 4.

Approximation Nu execution time [h] N

scattered 7.36 48.12 65 526

hybrid 6.91 20.54 74 137

Table 3: Average Nusselt along the cold spheres, execution time, and number of computational nodes.

Note: The pure regular discretization with MON approximation is again omitted from the table

because a stable numerical solution could not be obtained.
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Conclusions



Summary

• Proposed a computationally efficient

approach to the numerical treatment of

PDEs.

• Verified on a solution to a

two-dimensional de Vahl Davis natural

convection problem.

• Demonstrated on a solution within

irregular two- and three-dimensional

domains.

Future work:

⋆ A detailed study of the width of the

scattered layer δh.

⋆ Further study of aggressiveness of

h-refinement.

⋆ Demonstration on more difficult

problems: Mixed convection.
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Thank you for your attention.

Questions?
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