

MEDNARODNA PODIPLOMSKA ŠOLA INTERNATIONAL JOŽEFA STEFANA

JOŽEF STEFAN POSTGRADUATE SCHOOL

www.mos.si =

Meshless Adaptive Solution Procedure for Efficient Solving of Partial Differential Equations

Mitja Jančič Ljubljana, March 28, 2024

Table of Contents

- 1. Motivation
- 2. Monomial Augmentation Guidelines
- 3. hp-adaptive Solution Procedure
- 4. Spatially-Adaptive Approximation Methods
- 5. Conclusions

Numerical Treatment of PDEs

- 1. Domain discretization
- 2. Differential operator approximation
- 3. PDE discretization
- 4. Solve sparse linear system

Meshless approximation:

$$(\mathcal{L}u)(\mathbf{x}_c) \approx \sum_{i=1}^n w_i u(\mathbf{x}_i)$$

Example convection-driven fluid flow problem:

Mitia Jančič 🕚

Approximation Methods

Radial Basis Function-generated Finite Differences (RBF-FD)

- Polyharmonic Splines augmented with monomials
- Relatively large support size $n = 2\binom{m+d}{d}$.

Diffuse Approximation Method (DAM)

- Referred to as Weighted Least Squares (WLS) method
- Only monomials (less basis functions)
- Relatively large support size $n = 2\binom{m+d}{d}$
- The simplest collocation form (MON)
 - Monomials
 - Small support size n = 5 in 2D and n = 7 in 3D.
 - Stable only on regular nodes

Monomial Augmentation: Problem Setup

Numerical solution u_h of Poisson's equation with both Dirichlet and Neumann boundary conditions is studied:

Monomial Augmentation: Time vs. Error

p-refinement

p-refinement: Results

Computational time can be reduced by approximately 50 %. At the same time, accuracy of the numerical solution is notably better compared to unrefined solutions (at second order approximation).

hp-refinement: Goal

Workflow

Based on the well established solve-estimate-mark-refine paradigm.

🔹 Mitja Jančič 🔹 🖹 9 🖉 25

hp-refinement: solve-estimate-mark-refine

Poisson problem with exponentially strong source in the domain

$$\nabla^2 u(\mathbf{x}) = 2ae^{-a\|\mathbf{x}-\mathbf{x}_s\|^2} (2a\|\mathbf{x}-\mathbf{x}_s\|-d) \qquad \text{in } \Omega,$$
$$u(\mathbf{x}) = e^{-a\|\mathbf{x}-\mathbf{x}_s\|^2} \qquad \text{on } \Gamma_d.$$

$$\frac{\partial u(\mathbf{x})}{\partial \mathbf{n}} = -2a(\mathbf{x} - \mathbf{x}_s)\mathbf{n}e^{-a\|\mathbf{x} - \mathbf{x}_s\|^2} \qquad \text{on } \Gamma_n$$

Setup RBF-FD PHS order k = 3 Monomial augmentation with m ∈ {2, 4, 6, 8} IMEX with monomials m ∈ {4, 6, 8, 10}

hp-refinement: solve-estimate-mark-refine

Consider a problem of type $\mathcal{L}u = f_{RHS}$. The <u>IM</u>plicit-<u>EX</u>plicit error indicator:

- Obtain implicit solution u^(im) to governing problem using low-order approximations of L, i.e. L^(lo)_(im).
- Obtain high-order approximations of explicit operators *L*, i.e. *L*^(hi)_(ex)
- 3. Apply $\mathcal{L}_{(ex)}^{(hi)}$ to $u^{(im)}$ and obtain $f_{(ex)}$ in the process
- 4. Compare f_{RHS} and $f_{(ex)}$

The modified Texas Three-Fold strategy for error indicator field η

0

hp-refinement: solve-estimate-mark-refine

hp-adaptivity: Poisson problem

hp-adaptivity: Convergence Rates

🔍 Mitja Jančič 👘 👘 15 / 25

hp-adaptivity: Fretting Fatigue Problem

The problem is governed by the Cauchy-Navier equations

Setup

RBF-FD PHS order k = 3Monomial augmentation with $m \in \{2, 4, 6, 8\}$ IMEX with monomials $m \in \{4, 6, 8, 10\}$

Hybrid WLS-RBF-FD approximation

- Spatially-variable approximation method
- For greater solving efficiency: RBF-FD should be employed on as little nodes as possible

Hybrid scattered-regular

Discretization:

- Scattered nodes only where necessary
- Regular nodes elsewhere

Approximation:

- RBF-FD on scattered nodes (n = 12 in 2D for second order approximation)
- MON on regular nodes (n = 5 in 2D)

Note:

No special treatment required on the transition from scattered to regular nodes.

 $\nabla \cdot \mathbf{v} = 0,$

 $\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla p + \frac{1}{\text{Re}} \nabla \cdot (\nabla \mathbf{v}) - g T_{\Delta},$ $\frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T = \frac{1}{\text{RePr}} \nabla \cdot (\nabla T),$ (Mitja Jančić + 184/25)

Hybrid scattered-regular: DVD convergence

Nusselt number $Nu = \frac{L}{T_H - T_C} \frac{\partial T}{\partial n}$: the ratio between convective and conductive heat transfer (here computed along the cold wall).

Mitja Jančič 🔹 19 / 25

0		
2	υ	

Approximation	Nu	execution time [min]	Ν
scattered	12.32	46.31	10534
hybrid	12.36	29.11	11535

- 200 B	hybrid	12.36	29.11	11535
- 150 July	3D:			
- 100 - 100	Approximation	$\overline{\mathrm{Nu}}$	execution time [h]	Ν
- 50	scattered	7.36	48.12	65526
- 0	hybrid	6.91	20.54	74137

Summary

Presented:

- Monomial augmentation guidelines
- *p*-refinement
- *hp*-adaptive solution procedure
- Hybrid WLS-RBF-FD method
- Hybrid scattered-uniform discretization approach

Future work:

- Different marking and refinement strategies employed by the *hp*-adaptive solution procedure
- \star Different error indicators in the *hp*-adaptivity
- * hp-adaptivity in the context of fluid flow problems

Questions?

Mitja Jančič < = 221/25 = ∞ < </p>

Hybrid WLS-RBF-FD approximation: 3D-Domain

Approximation	e_{∞}	$t_{\rm shape}$ [s]	$N_{\text{RBF-FD}}/N \cdot 100$
WLS	NaN	4.74	0.00
RBF-FD	$9.48 \cdot 10^{-5}$	8.22	100.00
hybrid	$2.37 \cdot 10^{-3}$	6.15	34.28

- RBF-FD part improves stability
- Shorter execution times observed
- Other combination of approximation method could be used

hp-adaptivity: Brief Study of Free Parameters

hp-adaptivity: Boussinesq's Problem

The problem is governed by the Cauchy-Navier equations

- Good agreement with closed form solution
- + Avoided fine-tunning with free parameters

RBF-FD PHS order k = 3Monomial augmentation with $m \in \{2, 4, 6, 8\}$ IMEX with monomials $m \in \{4, 6, 8, 10\}$

Setup