

hp-adaptive method for solving partial differential equations

Mitja Jančič

 $05.\ 10.\ 2022$

Jožef Stefan Institute, Parallel and Distributed Systems International Postgraduate School Jožef Stefan

- 1. Motivation
- 2. Problems of interest
- 3. Optimized solution procedures
- 4. Conclusions

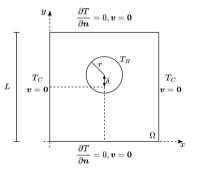
Motivation

Realistic problems do not have closed form solutions.

$$\nabla \cdot \vec{v} = 0,$$

$$\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \nabla \vec{v} = -\nabla p + \nabla \cdot (Ra\nabla \vec{v}) - \vec{g}RaPrT_{\Delta},$$

$$\frac{\partial T}{\partial t} + \vec{v} \cdot \nabla T = \nabla \cdot (\nabla T)$$



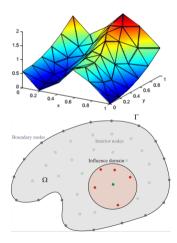
Numerical treatment is required:

- 1. Domain discretization
- 2. Differential operator approximation
- 3. PDE discretization
- 4. Solve sparse linear system

Differential operator approximation

$$(\mathcal{L}u)(\boldsymbol{x}_c) \approx \sum_{i=1}^n w_i u(\boldsymbol{x}_i)$$

 $\mathcal{L}\Big|_{\boldsymbol{x}_c} = \boldsymbol{w}_{\mathcal{L}}(\boldsymbol{x}_c)^T$



RBF-FD

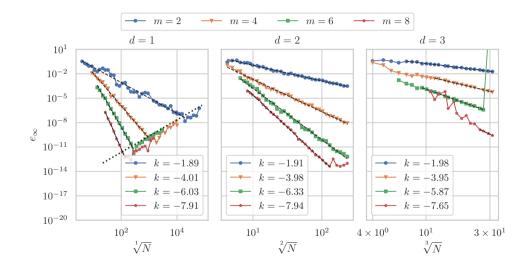
- Polyharmonic splines augmented with monomials
- + Higher stability
- Computationally complex
- Can operate on scattered nodes
- Control over the approximation order

Polyharmonic splines

$$f(r) = \begin{cases} r^k, & k \text{ odd} \\ r^k \log r, & k \text{ even} \end{cases},$$

Augmentation with $N_p = \binom{m+d}{m}$ monomials p with orders up to and including degree m,

$$\begin{bmatrix} \boldsymbol{F} & \boldsymbol{P} \\ \boldsymbol{P}^{\mathsf{T}} & \boldsymbol{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{w} \\ \boldsymbol{\lambda} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\ell}_f \\ \boldsymbol{\ell}_p \end{bmatrix}.$$

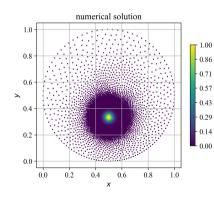


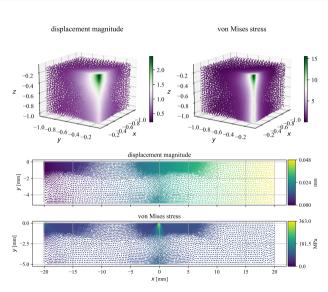
Problems of interest

Problems of interest

Mostly problems with:

- Strong sources
- Singularities





Optimized solution procedures

- *p*-refinement
- Adaptive *hp*-refinement

p-refined solution procedure

Refinement methods

Refining methods are indispensable in problems where the solution error varies significantly throughout the computational domain.

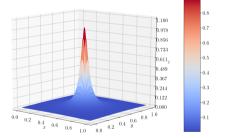
Refinement gravely improves accuracy of numerical method.

- *p*-refinement
- *h*-refinement
- *hp*-refinement

•••					T	- T	-		-	••	-	_	T 7		••	-	-	-	-	-		-	т.
					T	- T -				::			- T - 1		::								- T
					Ť	- T	-		-		-	_	- T -			-	-	-	-	-		-	- T
	• •	• •	• •	•	•	•	•	• •	•	• •	•	•	•)	• •	•	•	•	•	•	• •	•	•
• • •					T	- T	-		-	• •	-	-	T 7		• •	-	-	-	-	-		-	- T
					T	- T	-		-		-	-	- T -		- T	_	-	-	-	-		-	- T
•••					1	Т	-		-	•••	-	-	T 7		• •	-	-	-	-	-		-	т
	• •	• •	• •		•	•	•	• •	•	• •	•	•	••	,	• •	•	•	٠	•	•	•	•	•
•	•••	•••	•••	•	•	•	•		•	•••	•	•				•	•	•	•	•		•	•

Poisson problem with strong source in the domain

$$\nabla^2 u(\mathbf{x}) = f_{\text{lap}}(\mathbf{x})$$
$$f_{\text{lap}}(\mathbf{x}) = 3200 \frac{25 ||4\mathbf{x} - \mathbf{2}||^2}{f(\mathbf{x})^3} - 800 \frac{d}{f(\mathbf{x})^2}$$



p-refinement: Demonstration

Different approximation orders m are used:

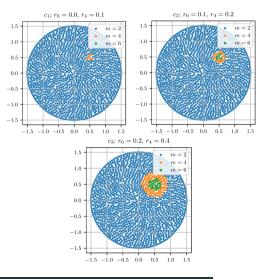
$$m = \begin{cases} 6, & ||x_i - x_s|| \le r_6 \\ 4, & r_6 < ||x_i - x_s|| \le r_4 \\ 2, & \text{otherwise.} \end{cases}$$

And three apriori prescribed approximation order distributions

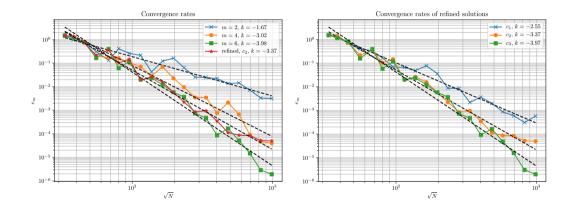
$$c_{1} = \left\{ r_{6} = 0, r_{4} = \frac{1}{10} \right\},$$

$$c_{2} = \left\{ r_{6} = \frac{1}{10}, r_{4} = \frac{1}{5} \right\} \text{ and }$$

$$c_{3} = \left\{ r_{6} = \frac{1}{5}, r_{4} = \frac{2}{5} \right\}.$$

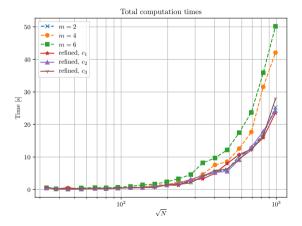


p-refinement: Convergence rates



p-refinement: Computational times

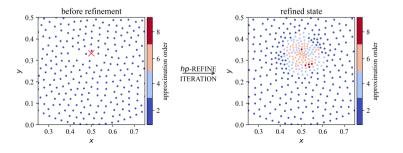
Using *p*-refinement we successfully improved convergence rates at <u>a very small additional cost</u> to execution times.



hp-adaptive solution procedure

hp-adaptivity: Workflow

- 1. **Solve** A numerical solution \hat{u} is obtained.
- 2. Estimate An estimate of the spatial accuracy of the numerical solution is calculated using error indicators.
- 3. Mark Depending on the error indicator values η_i , a marking strategy is used to mark the computational nodes for (de)refinement.
- 4. Refine Refinement strategy is employed to define the amount of the (de)refinement.

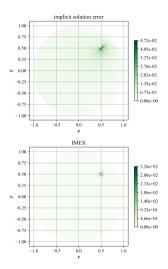


Consider a problem of type

 $\mathcal{L}u = f_{RHS}.$

The IMplicit-EXplicit error indicator:

- Obtain implicit solution u^(im) to governing problem using low-order approximations of L, i.e. L^(lo)_(im).
- Obtain high-order approximations of explicit operators *L*, i.e. *L*^(hi)_(ex)
- 3. Apply $\mathcal{L}_{(ex)}^{(hi)}$ to $u^{(im)}$ and obtain $f_{(ex)}$ in the process
- 4. Compare f_{RHS} and $f_{(ex)}$



hp-adaptivity: Mark module

The modified Texas Three-Fold strategy for error indicator field $\boldsymbol{\eta}$

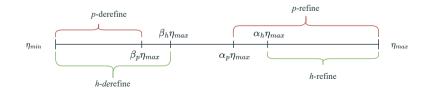
$$\begin{cases} \eta_i > \alpha \eta_{max}, & \text{refine} \\ \beta \eta_{max} \le \eta_i \le \alpha \eta_{max}, & \text{do nothing} \\ \eta_i < \beta \eta_{max}, & \text{derefine} \end{cases}$$

Advantage

Easy to understand and implement.

Problem

Does not lead to optimal results.



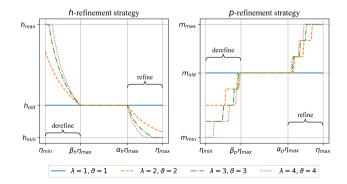
hp-adaptivity: Refine module

Defining <u>the amount</u> of (de)refinement. *h*-refine:

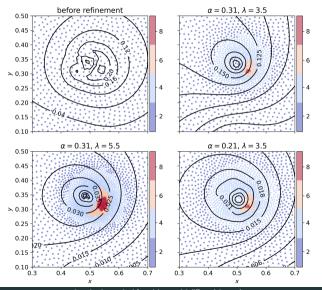
$$h_i^{new}(\boldsymbol{p}) = rac{h_i^{old}}{rac{\eta_i - lpha \eta_{max}}{\eta_{max} - lpha \eta_{max}} (\lambda - 1) + 1}$$

h-derefine:

$$h_i^{new}(oldsymbol{
ho}) = rac{h_i^{old}}{rac{eta\eta_{max}-\eta_i}{eta\eta_{max}-\eta_{min}}ig(rac{1}{artheta}-1ig)+1},$$



hp-adaptivity: Brief study of free parameters



Mitja Jančič

hp-adaptive method for solving partial differential equations

hp-adaptivity: Example problem

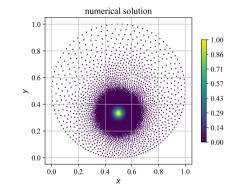
Poisson problem with exponentially strong source in the domain

$$\nabla^2 u(\mathbf{x}) = 2ae^{-a\|\mathbf{x}-\mathbf{x}_s\|^2} (2a\|\mathbf{x}-\mathbf{x}_s\|-d) \quad \text{in } \Omega,$$
$$u(\mathbf{x}) = e^{-a\|\mathbf{x}-\mathbf{x}_s\|^2} \quad \text{on } \Gamma_d,$$
$$\nabla u(\mathbf{x}) = -2a(\mathbf{x}-\mathbf{x}_s)e^{-a\|\mathbf{x}-\mathbf{x}_s\|^2} \quad \text{on } \Gamma_n$$

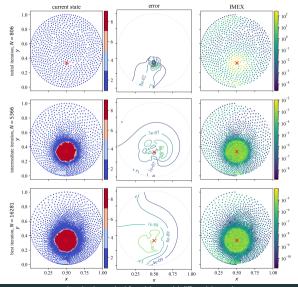
Setup

Mitja Jančič

- RBF-FD
- PHS order k = 3
- Monomial augmentation with $m \in \{2, 4, 6, 8\}$
- IMEX with monomials $m \in \{4, 6, 8, 10\}$

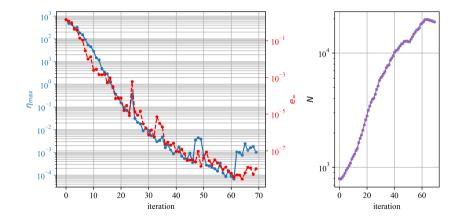


hp-adaptivity: Demonstration

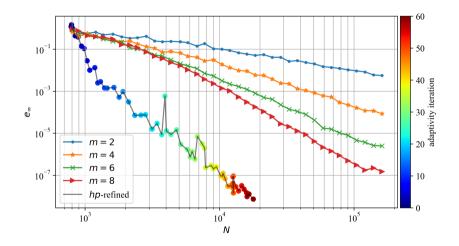


Mitja Jančič

hp-adaptive method for solving partial differential equations



hp-adaptivity: Convergence rates – comparrison



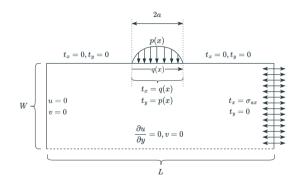
hp-adaptivity: Fretting fatigue problem - problem setup

The problem is governed by the Cauchy-Navier equations

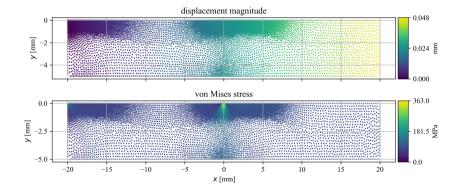
$$(\lambda + \mu)\nabla(\nabla \cdot \boldsymbol{u}) + \mu\nabla^2 \boldsymbol{u} = \boldsymbol{f}$$

Setup

- RBF-FD
- PHS order k = 3
- Monomial augmentation with $m \in \{2, 4, 6, 8\}$
- IMEX with monomials $m \in \{4, 6, 8, 10\}$

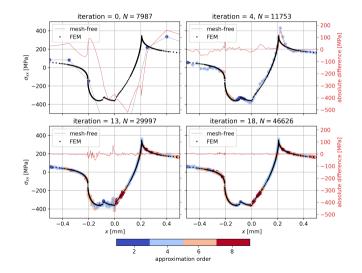


hp-adaptivity: Fretting fatigue problem – Example solution



hp-adaptivity: Fretting fatigue problem - Surface traction

- Surface traction σ_{xx} under the contact
- Non-trivial local approximation order distribution
- Increased nodal density
- Good agreement with FEM solution



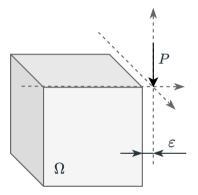
hp-adaptivity: Boussinesq's problem

The problem is governed by the Cauchy-Navier equations

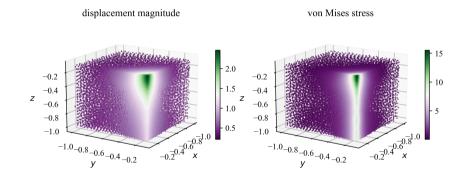
$$(\lambda + \mu)\nabla(\nabla \cdot \boldsymbol{u}) + \mu\nabla^2 \boldsymbol{u} = \boldsymbol{f}.$$

Setup

- RBF-FD
- PHS order k = 3
- Monomial augmentation with $m \in \{2, 4, 6, 8\}$
- IMEX with monomials $m \in \{4, 6, 8, 10\}$

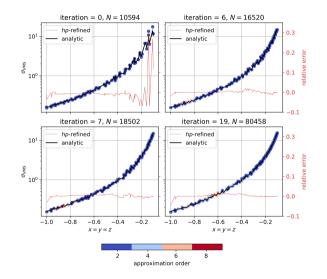


hp-adaptivity: Boussinesq problem – Example solution



hp-adaptivity: Boussinesq problem - von Mises stress

- The von Mises stress σ_{VMS} along body diagonal
- Non-trivial local approximation order distribution
- Increased nodal density
- Good agreement with closed form solution
- + Avoided fine-tunning with free parameters



Conclusions

Presented:

- Conceptual *p*-refinement
- Adaptive *hp*-refinement

Future work:

- \star Different marking and refinement strategies in the *hp*-adaptivity
- $\star\,$ Different error indicators in the hp-adaptivity
- $\star~$ hp-adaptivity in the context of fluid flow problems

Questions?