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Motivation



Why numerical solution?

Realistic problems do not have closed form

solutions.

∇ · v⃗ = 0,

∂v⃗

∂t
+ v⃗ ·∇v⃗ = −∇p +∇ · (Ra∇v⃗)− g⃗RaPrT∆,

∂T

∂t
+ v⃗ ·∇T = ∇ · (∇T )
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Numerical treatment

Numerical treatment is required:

1. Domain discretization

2. Differential operator approximation

3. PDE discretization

4. Solve sparse linear system

Differential operator approximation

(Lu)(xc) ≈
n∑

i=1

wiu(x i )

L
∣∣∣
xc

= wL(xc)
T
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Approximation basis

RBF-FD

• Polyharmonic splines augmented with

monomials

+ Higher stability

- Computationally complex

• Can operate on scattered nodes

• Control over the approximation order

Polyharmonic splines

f (r) =

{
rk , k odd

rk log r , k even
,

Augmentation with Np =
(
m+d
m

)
monomials p

with orders up to and including degree m,[
F P
PT 0

][
w
λ

]
=

[
ℓf
ℓp

]
.
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Approximation order
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Problems of interest



Problems of interest

Mostly problems with:

• Strong sources

• Singularities
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Optimized solution procedures



Optimized solution procedures

• p-refinement

• Adaptive hp-refinement
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p-refined solution procedure



Refinement methods

Refining methods are indispensable in problems where the solution error varies significantly

throughout the computational domain.

Refinement gravely improves accuracy of numerical method.

• p-refinement

• h-refinement

• hp-refinement
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p-refinement: Problem setup

Poisson problem with strong source

in the domain

∇2u(x) = flap(x)

flap(x) = 3200
25 ∥4x − 2∥2

f (x)3
− 800

d

f (x)2
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p-refinement: Demonstration

Different approximation orders m are used:

m =


6, ∥xi − xs∥ ≤ r6
4, r6 < ∥xi − xs∥ ≤ r4
2, otherwise.

And three apriori prescribed approximation

order distributions

c1 =

{
r6 = 0, r4 =

1

10

}
,

c2 =

{
r6 =

1

10
, r4 =

1

5

}
and

c3 =

{
r6 =

1

5
, r4 =

2

5

}
.
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p-refinement: Convergence rates
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p-refinement: Computational times

Using p-refinement we successfully

improved convergence rates at

a very small additional cost to

execution times.
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hp-adaptive solution procedure



hp-adaptivity: Workflow

1. Solve – A numerical solution û is obtained.

2. Estimate – An estimate of the spatial accuracy of the numerical solution is calculated

using error indicators.

3. Mark – Depending on the error indicator values ηi , a marking strategy is used to mark the

computational nodes for (de)refinement.

4. Refine – Refinement strategy is employed to define the amount of the (de)refinement.
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hp-adaptivity: Estimate module – IMEX

Consider a problem of type

Lu = fRHS .

The IMplicit-EXplicit error indicator:

1. Obtain implicit solution u(im) to

governing problem using low-order

approximations of L, i.e. L(lo)
(im).

2. Obtain high-order approximations of

explicit operators L, i.e. L(hi)
(ex)

3. Apply L(hi)
(ex) to u(im) and obtain f(ex) in

the process

4. Compare fRHS and f(ex)
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hp-adaptivity: Mark module

The modified Texas Three-Fold strategy for error indicator field η
ηi > αηmax , refine

βηmax ≤ ηi ≤ αηmax , do nothing

ηi < βηmax , derefine

.

Advantage

Easy to understand and implement.

Problem

Does not lead to optimal results.

p-derefine
p-refine

h-refine
h-derefine
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hp-adaptivity: Refine module

Defining the amount of (de)refinement.

h-refine:

hnewi (p) =
holdi

ηi−αηmax

ηmax−αηmax

(
λ− 1

)
+ 1

h-derefine:

hnewi (p) =
holdi

βηmax−ηi

βηmax−ηmin

(
1
ϑ − 1

)
+ 1

,
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hp-adaptivity: Brief study of free parameters
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hp-adaptivity: Example problem

Poisson problem with exponentially strong source in

the domain

∇2u(x) = 2ae−a∥x−x s∥2

(2a ∥x − x s∥ − d) in Ω,

u(x) = e−a∥x−x s∥2

on Γd ,

∇u(x) = −2a(x − x s)e
−a∥x−x s∥2

on Γn

Setup

• RBF-FD

• PHS order k = 3

• Monomial augmentation with m ∈ {2, 4, 6, 8}
• IMEX with monomials m ∈ {4, 6, 8, 10}
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hp-adaptivity: Demonstration
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hp-adaptivity: Convergence rates – IMEX
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hp-adaptivity: Convergence rates – comparrison
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hp-adaptivity: Fretting fatigue problem - problem setup

The problem is governed by the

Cauchy-Navier equations

(λ+ µ)∇(∇ · u) + µ∇2u = f

Setup

• RBF-FD

• PHS order k = 3

• Monomial augmentation with

m ∈ {2, 4, 6, 8}
• IMEX with monomials

m ∈ {4, 6, 8, 10}
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hp-adaptivity: Fretting fatigue problem – Example solution
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hp-adaptivity: Fretting fatigue problem – Surface traction

• Surface traction σxx

under the contact

• Non-trivial local

approximation order

distribution

• Increased nodal density

• Good agreement with

FEM solution
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hp-adaptivity: Boussinesq’s problem

The problem is governed by the Cauchy-Navier

equations

(λ+ µ)∇(∇ · u) + µ∇2u = f .

Setup

• RBF-FD

• PHS order k = 3

• Monomial augmentation with

m ∈ {2, 4, 6, 8}
• IMEX with monomials m ∈ {4, 6, 8, 10}
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hp-adaptivity: Boussinesq problem – Example solution
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hp-adaptivity: Boussinesq problem – von Mises stress

• The von Mises stress

σVMS along body

diagonal

• Non-trivial local

approximation order

distribution

• Increased nodal density

• Good agreement with

closed form solution

+ Avoided fine-tunning

with free parameters
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Conclusions



Summary

Presented:

• Conceptual p-refinement

• Adaptive hp-refinement

Future work:

⋆ Different marking and refinement strategies in the hp-adaptivity

⋆ Different error indicators in the hp-adaptivity

⋆ hp-adaptivity in the context of fluid flow problems
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Questions?
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