MEDNARODNA PODIPLOMSKA ŠOLA JOŽEFA STEFANA

Meshless Adaptive Solution Procedure for Efficient Solving of Partial Differential Equations

Mitja Jančič
Ljubljana, November 16, 2023

Table of Contents

1. Motivation
2. Monomial Augmentation Guidelines
3. hp-adaptive Solution Procedure
4. Spatially-Adaptive Approximation Methods

Seminar III:

5. Conclusions

Seminar III at the doctoral level is intended to present the research or project results of the studies. Students prepare a comprehensive presentation of their results and present their seminars in front of a committee of three professors.

Numerical Treatment of PDEs

Example convection-driven fluid flow problem:

1. Domain discretization
2. Differential operator approximation
3. PDE discretization
4. Solve sparse linear system

Meshless approximation:
$(\mathcal{L} u)\left(\boldsymbol{x}_{c}\right) \approx \sum_{i=1}^{n} w_{i} u\left(\boldsymbol{x}_{i}\right)$

$$
\left.\mathcal{L}\right|_{\boldsymbol{x}_{c}}=\boldsymbol{w}_{\mathcal{L}}\left(\boldsymbol{x}_{c}\right)^{T}
$$

$\boldsymbol{\nabla} \cdot \vec{v}=0$,
$\frac{\partial \vec{v}}{\partial t}+\vec{v} \cdot \nabla \vec{v}=-\nabla p+\nabla \cdot(\operatorname{Ra} \nabla \vec{v})-\vec{g} \operatorname{Ra} \operatorname{Pr} T_{\Delta}$, $\frac{\partial T}{\partial t}+\vec{v} \cdot \boldsymbol{\nabla} T=\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} T)$

Approximation Methods

- Radial Basis Function-generated Finite Differences (RBF-FD)
- Polyharmonic Splines augmented with monomials
- Relatively large support size $n=\binom{m+d}{d}$.
- Diffuse Approximation Method (DAM)
- Referred to as Weighted Least Squares (WLS) method
- Only monomials (less basis functions)
- Relatively large support size $n=\binom{m+d}{d}$
- The simplest collocation form (MON)
- Monomials
- Small support size $n=5$ in 2D and $n=7$ in 3D.
- Stable only on regular nodes

Monomial Augmentation: Problem Setup

Numerical solution u_{h} of Poisson's equation with both Dirichlet and Neumann boundary conditions is studied:

$$
\begin{align*}
\nabla^{2} u(x) & =f_{\text {lap }}(x) & & \text { in } \Omega, \tag{1}\\
u(x) & =f(x) & & \text { on } \Gamma_{d}, \tag{2}\\
\nabla u(x) & =\boldsymbol{f}_{\text {grad }}(x) & & \text { on } \Gamma_{n} . \tag{3}
\end{align*}
$$

- Approximation order controlled with the highest order of augmenting monomial.
- Note: recommended stencil size $n=\binom{m+d}{d}$

Monomial Augmentation: Time vs. Error

The recommended augmentation order

$m=\frac{5}{4} k+\frac{4}{5} d-2$

p-refinement

Poisson problem with strong

 source in the domain$$
\begin{aligned}
\nabla^{2} u(\boldsymbol{x}) & =f_{\text {lap }}(\boldsymbol{x}) \\
f_{\text {lap }}(\boldsymbol{x}) & =3200 \frac{25\|4 \boldsymbol{x}-\mathbf{2}\|^{2}}{f(\boldsymbol{x})^{3}}-800 \frac{d}{f(\boldsymbol{x})}
\end{aligned}
$$

p-refinement: Results

Computational time can be reduced by approximately 50%. At the same time, accuracy of the numerical solution is notably better compared to unrefined solutions (at second order approximation).

hp-refinement: Goal

Workflow

Based on the well established solve-estimate-mark-refine paradigm.

$h p$-refinement: solve-estimate-mark-refine

Poisson problem with exponentially strong source in the domain

$$
\begin{aligned}
\nabla^{2} u(\boldsymbol{x}) & =2 a e^{-a\left\|\boldsymbol{x}-\boldsymbol{x}_{s}\right\|^{2}}\left(2 a\left\|\boldsymbol{x}-\boldsymbol{x}_{s}\right\|-d\right) & & \text { in } \Omega \\
u(\boldsymbol{x}) & =e^{-a\left\|\boldsymbol{x}-\boldsymbol{x}_{s}\right\|^{2}} & & \text { on } \Gamma_{d} \\
\nabla u(\boldsymbol{x}) & =-2 a\left(\boldsymbol{x}-\boldsymbol{x}_{s}\right) e^{-a\left\|\boldsymbol{x}-\boldsymbol{x}_{s}\right\|^{2}} & & \text { on } \Gamma_{n}
\end{aligned}
$$

Setup

- RBF-FD
- PHS order $k=3$
- Monomial augmentation with $m \in\{2,4,6,8\}$
- IMEX with monomials $m \in\{4,6,8,10\}$

$h p$-refinement: solve-estimate-mark-refine

Consider a problem of type $\mathcal{L} u=f_{R H S}$. The IMplicit-EXplicit error indicator:

1. Obtain implicit solution $u^{(i m)}$ to governing problem using low-order approximations of \mathcal{L}, i.e. $\mathcal{L}_{(\text {im })}^{(/ o)}$.
2. Obtain high-order approximations of explicit operators \mathcal{L}, i.e. $\mathcal{L}_{(\text {ex })}^{(h i)}$
3. Apply $\mathcal{L}_{(e x)}^{(h i)}$ to $u^{(i m)}$ and obtain $f_{(e x)}$ in the process
4. Compare $f_{R H S}$ and $f_{(e x)}$

hp-refinement: solve-estimate-mark-refine

The modified Texas Three-Fold strategy for error indicator field η
$\begin{cases}\eta_{i}>\alpha \eta_{\max }, & \text { refine } \\ \beta \eta_{\max } \leq \eta_{i} \leq \alpha \eta_{\max }, & \text { do nothing } \\ \eta_{i}<\beta \eta_{\max }, & \text { derefine }\end{cases}$

Advantage

Easy to understand and implement.

Problem

Does not lead to optimal results.

hp-refinement: solve-estimate-mark-refine

Defining the amount of (de)refinement.

h-refine

$$
h_{i}^{\text {new }}(\boldsymbol{p})=\frac{h_{i}^{\text {old }}}{\frac{\eta_{i}-\alpha \eta_{\max }}{\eta_{\text {max }}-\alpha \eta_{\max }}(\lambda-1)+1}
$$

h-derefine

$h_{i}^{\text {new }}(\boldsymbol{p})=\frac{h_{i}^{\text {old }}}{\frac{\beta \eta_{\max }-\eta_{i}}{\beta \eta_{\max }-\eta_{\min }}\left(\frac{1}{\vartheta}-1\right)+1}$

hp-adaptivity: Poisson problem

hp-adaptivity: Convergence Rates

Setup

hp-adaptivity: Fretting Fatigue Problem

The problem is governed by the Cauchy-Navier equations

RBF-FD
PHS order $k=3$
Monomial augmentation
with $m \in\{2,4,6,8\}$
IMEX with monomials
$m \in\{4,6,8,10\}$

J

- Good agreement with FEM solution

iteration $=13, N=29997$

iteration $=4, N=11753$

iteration $=18, N=46626$

Hybrid WLS-RBF-FD approximation

- Spatially-variable approximation method
- For greater solving efficiency: RBF-FD should be employed on as little nodes as possible

Hybrid scattered-regular

Discretization:

- Scattered nodes only where necessary
- Regular nodes elsewhere

Approximation:

- RBF-FD on scattered nodes $(n=12$ in 2D for second order approximation)
-MON on regular nodes $(n=5$ in 2D)

$$
\begin{aligned}
\frac{\partial \vec{v}}{\partial t}+\vec{v} \cdot \nabla \vec{v} & =-\nabla p+\nabla \cdot(\operatorname{Ra} \nabla \vec{v})-\vec{g} R a \operatorname{Pr} T_{\Delta} \\
\frac{\partial T}{\partial t}+\vec{v} \cdot \nabla T & =\nabla \cdot(\nabla T)
\end{aligned}
$$

$$
\nabla \cdot \vec{v}=0
$$

Hybrid scattered-regular: DVD convergence

Nusselt number $\mathrm{Nu}=\frac{L}{T_{H}-T_{C}} \frac{\partial T}{\partial \boldsymbol{n}}$: the ratio between convective and conductive heat transfer (here computed along the cold wall).

Hybrid scattered-regular: Irregular domains

2D:

Approximation	$\overline{\mathrm{Nu}}$	execution time [min]	N
scattered	12.32	46.31	10534
hybrid	12.36	29.11	11535

3D:

Approximation	$\overline{\mathrm{Nu}}$	execution time $[\mathrm{h}]$	N
scattered	7.36	48.12	65526
hybrid	6.91	20.54	74137

Mitja Jančič $\bar{\equiv} 20 / \overline{25}$

Summary

Presented:

- Monomial augmentation guidelines
- p-refinement
- hp-adaptive solution procedure
- Hybrid WLS-RBF-FD method
- Hybrid scattered-uniform discretization approach

Future work:
\star Different marking and refinement strategies employed by the $h p$-adaptive solution procedure

* Different error indicators in the $h p$-adaptivity

」 $\star h p$-adaptivity in the context of fluid flow problems

Questions?

Hybrid WLS-RBF-FD approximation: 3D-Domain

 approximation method could be used

hp-adaptivity: Brief Study of Free Parameters

hp-adaptivity: Boussinesq's Problem

The problem is governed by the Cauchy-Navier equations

Setup

RBF-FD

PHS order $k=3$
Monomial augmentation with $m \in\{2,4,6,8\}$
IMEX with monomials
$m \in\{4,6,8,10\}$

$$
(\lambda+\mu) \nabla(\nabla \cdot \boldsymbol{u})+\mu \nabla^{2} \boldsymbol{u}=\boldsymbol{f}
$$

- Good agreement with closed form solution
+ Avoided fine-tunning with free parameters

