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Seminar III:

Seminar III at the doctoral level is intended to
present the research or project results of the
studies. Students prepare a comprehensive pre-
sentation of their results and present their semi-
nars in front of a committee of three professors.



Numerical Treatment of PDEs

1. Domain discretization

2. Differential operator
approximation

3. PDE discretization

4. Solve sparse linear system

Meshless approximation:

(Lu)(xc ) ≈
∑n

i=1 wiu(x i )

L
∣∣∣
xc

= wL(xc )T
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Example convection-driven fluid
flow problem:

∇ · v⃗ = 0,

∂v⃗

∂t
+ v⃗ · ∇v⃗ = −∇p + ∇ · (Ra∇v⃗) − g⃗RaPrT∆,

∂T

∂t
+ v⃗ · ∇T = ∇ · (∇T )



Approximation Methods

▶ Radial Basis Function-generated Finite Differences
(RBF-FD)
▶ Polyharmonic Splines augmented with monomials
▶ Relatively large support size n =

(
m+d
d

)
.

▶ Diffuse Approximation Method (DAM)
▶ Referred to as Weighted Least Squares (WLS) method
▶ Only monomials (less basis functions)
▶ Relatively large support size n =

(
m+d
d

)
▶ The simplest collocation form (MON)

▶ Monomials
▶ Small support size n = 5 in 2D and n = 7 in 3D.
▶ Stable only on regular nodes
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Monomial Augmentation: Problem Setup

Numerical solution uh of Poisson’s equation with both Dirichlet
and Neumann boundary conditions is studied:
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∇2u(x) = flap(x) in Ω, (1)

u(x) = f (x) on Γd , (2)

∇u(x) = f grad (x) on Γn. (3)
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▶ Approximation order
controlled with the
highest order of
augmenting monomial.

▶ Note: recommended
stencil size n =

(m+d
d

)



Monomial Augmentation: Time vs. Error
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The recommended augmentation order

m = 5
4
k + 4

5
d − 2



p-refinement

Poisson problem with strong
source in the domain

∇2u(x) = flap(x)

flap(x) = 3200
25 ∥4x − 2∥2

f (x)3
− 800

d

f (x)2
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p-refinement: Results
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Computational time can be reduced by approximately 50 %. At
the same time, accuracy of the numerical solution is notably better
compared to unrefined solutions (at second order approximation).
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hp-refinement: Goal
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Workflow

Based on the well established solve-estimate-mark-refine paradigm.
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hp-refinement: solve-estimate-mark-refine

Poisson problem with exponentially strong source in the domain

∇2u(x) = 2ae−a∥x−x s∥2(2a ∥x − x s∥ − d) in Ω,

u(x) = e−a∥x−x s∥2 on Γd ,

∇u(x) = −2a(x − x s)e
−a∥x−x s∥2 on Γn

Setup

▶ RBF-FD

▶ PHS order k = 3

▶ Monomial augmentation with m ∈ {2, 4, 6, 8}
▶ IMEX with monomials m ∈ {4, 6, 8, 10}
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hp-refinement: solve-estimate-mark-refine

Consider a problem of type Lu = fRHS .
The IMplicit-EXplicit error indicator:

1. Obtain implicit solution u(im) to
governing problem using low-order

approximations of L, i.e. L(lo)
(im).

2. Obtain high-order approximations of

explicit operators L, i.e. L(hi)
(ex)

3. Apply L(hi)
(ex) to u(im) and obtain f(ex) in

the process

4. Compare fRHS and f(ex)
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hp-refinement: solve-estimate-mark-refine

The modified Texas Three-Fold strategy for error indicator field η
ηi > αηmax , refine

βηmax ≤ ηi ≤ αηmax , do nothing

ηi < βηmax , derefine

.

Advantage

Easy to understand and imple-
ment.

Problem

Does not lead to optimal results.
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hp-refinement: solve-estimate-mark-refine

Defining the amount of (de)refinement.

h-refine

hnewi (p) = holdi
ηi−αηmax

ηmax−αηmax

(
λ−1

)
+1

h-derefine

hnewi (p) = holdi
βηmax−ηi

βηmax−ηmin

(
1
ϑ
−1

)
+1
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min h max h max max

hmin

hold

hmax

derefine

refine

h-refinement strategy

min p max p max max

mmin

mold

mmax

derefine

refine

p-refinement strategy

= 1, = 1
= 2, = 2

= 3, = 3
= 4, = 4



hp-adaptivity: Poisson problem
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hp-adaptivity: Convergence Rates
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hp-adaptivity: Fretting Fatigue Problem

The problem is governed by
the Cauchy-Navier equations

(λ+ µ)∇(∇ · u) + µ∇2u = f
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Setup

RBF-FD
PHS order k = 3
Monomial augmentation
with m ∈ {2, 4, 6, 8}
IMEX with monomials
m ∈ {4, 6, 8, 10}

▶ Good agreement with
FEM solution



Hybrid WLS–RBF-FD approximation
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▶ Spatially-variable approximation method

▶ For greater solving efficiency: RBF-FD should
be employed on as little nodes as possible



Hybrid scattered-regular
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Discretization:

▶ Scattered nodes only where necessary

▶ Regular nodes elsewhere

Approximation:

▶ RBF-FD on scattered nodes (n = 12 in
2D for second order approximation)

▶ MON on regular nodes (n = 5 in 2D)

Note:

No special treatment required on
the transition from scattered to reg-
ular nodes.

∂v⃗

∂t
+ v⃗ · ∇v⃗ = −∇p + ∇ · (Ra∇v⃗) − g⃗RaPrT∆

∂T

∂t
+ v⃗ · ∇T = ∇ · (∇T )

∇ · v⃗ = 0



Hybrid scattered-regular: DVD convergence

Mitja Jančič 19 / 25

Nusselt number Nu = L
TH−TC

∂T
∂n : the ratio between convective and

conductive heat transfer (here computed along the cold wall).



Hybrid scattered-regular: Irregular domains
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2D:

3D:



Summary

Presented:

▶ Monomial augmentation guidelines

▶ p-refinement

▶ hp-adaptive solution procedure

▶ Hybrid WLS–RBF-FD method

▶ Hybrid scattered-uniform discretization approach

Future work:

⋆ Different marking and refinement strategies employed by the
hp-adaptive solution procedure

⋆ Different error indicators in the hp-adaptivity

⋆ hp-adaptivity in the context of fluid flow problems
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Questions?
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Hybrid WLS–RBF-FD approximation: 3D-Domain

▶ RBF-FD part improves
stability

▶ Shorter execution times
observed

▶ Other combination of
approximation method could
be used
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hp-adaptivity: Brief Study of Free Parameters
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hp-adaptivity: Boussinesq’s Problem

The problem is governed by
the Cauchy-Navier equations

(λ+ µ)∇(∇ · u) + µ∇2u = f
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Setup

RBF-FD
PHS order k = 3
Monomial augmentation
with m ∈ {2, 4, 6, 8}
IMEX with monomials
m ∈ {4, 6, 8, 10}
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▶ Good agreement with
closed form solution

+ Avoided fine-tunning with
free parameters
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